173
Views
1
CrossRef citations to date
0
Altmetric
Process scores on measures of learning and memory: Issue 2

Primacy and recency effects in verbal memory are differentially associated with post-mortem frontal cortex p-tau 217 and 202 levels in a mixed sample of community-dwelling older adults

, , , , , , , & show all
Pages 770-785 | Received 26 Mar 2023, Accepted 28 Jun 2023, Published online: 13 Jul 2023

References

  • Aguillonm, D., Langella, S., Chen, Y., Sanchez, J. S., Su, Y., Vila-Castelar, C., Vasquez, D., Zetterberg, H., Hansson, O., Dage, J. L., Janelidze, S., Chen, K., Fox-Fuller, J. T., Auden, P., Martinez, J. E., Garcia, G., Baena, A., Guzman, C., Johnson, K. A., Quiroz, Y. T. (2022). Plasma p-tau217 predicts in vivo brain pathology and cognition in autosomal dominant Alzheimer’s disease. Alzheimer’s & Dementia, . Advance online publication https://doi.org/10.1002/alz.12906
  • Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Buchman, A. S., Bennett, D. A., & Schneider, J. A. (2017). The relationship of cerebral vessel pathology to brain microinfarcts. Brain Pathology, 27(1), 77–85. https://doi.org/10.1111/bpa.12365
  • Arvanitakis, Z., Leurgans, S. E., Barnes, L. L., Bennett, D. A., & Schneider, J. A. (2011). Microinfarct pathology, dementia, and cognitive systems. Stroke, 42(3), 722–727. https://doi.org/10.1161/STROKEAHA.110.595082
  • Ashton, N. J., Janelidze, S., Mattsson-Carlgren, N., Binette, A. P., Strandberg, O., Brum, W. S., Karikari, T. K., González-Ortiz, F., Di Molfetta, G., Meda, F. J., Jonaitis, E. M., Koscik, R. L., Cody, K., Betthauser, T. J., Li, Y., Vanmechelen, E., Palmqvist, S., Stomrud, E., Bateman, R. J., Hansson, O. (2022). Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nature Medicine, 28(12), 2555–2562. https://doi.org/10.1038/s41591-022-02074-w
  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 2, 89–195. https://doi.org/10.1016/S0079-7421(08)60422-3
  • Barthélemy, N. R., Bateman, R. J., Hirtz, C., Marin, P., Becher, F., Sato, C., Gabelle, A., & Lehmann, S. (2020). Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimer’s Research & Therapy, 12(1), 26. https://doi.org/10.1186/s13195-020-00596-4
  • Barthélemy, N. R., Li, Y., Joseph-Mathurin, N., Gordon, B. A., Hassenstab, J., Benzinger, T. L. S., Buckles, V., Fagan, A. M., Perrin, R. J., Goate, A. M., Morris, J. C., Karch, C. M., Xiong, C., Allegri, R., Mendez, P. C., Berman, S. B., Ikeuchi, T., Mori, H., Shimada, H., McDade, E. 2020. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nature Medicine, 26(3) 26: 3 398–407. https://doi.org/10.1038/s41591-020-0781-z
  • Bayley, P. J., Salmon, D. P., Bondi, M. W., Bui, B. K., Olichney, J., Delis, D. C., Thomas, R. G., & Thal, L. J. (2000). Comparison of the serial position effect in very mild Alzheimer’s disease, mild Alzheimer’s disease, and amnesia associated with electroconvulsive therapy. Journal of the International Neuropsychological Society, 6(3), 290–298. https://doi.org/10.1017/S1355617700633040
  • Bennett, D. A., Buchman, A. S., Boyle, P. A., Barnes, L. L., Wilson, R. S., & Schneider, J. A. (2018). Religious orders study and rush memory and aging project. Journal of Alzheimer’s Disease, 64, S161–S189. https://doi.org/10.3233/JAD-179939
  • Bennett, D. A., Schneider, J. A., Aggarwal, N. T., Arvanitakis, Z., Shah, R. C., Kelly, J. F., Fox, J. H., Cochran, E. J., Arends, D., Treinkman, A. D., & Wilson, R. S. (2006). Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology, 27(3), 169–176. https://doi.org/10.1159/000096129
  • Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., & Wilson, R. S. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66(12), 1837–1844. https://doi.org/10.1212/01.wnl.0000219668.47116.e6
  • Bennett, D. A., Wilson, R. S., Schneider, J. A., Evans, D. A., Beckett, L. A., Aggarwal, N. T., Barnes, L. L., Fox, J. H., & Bach, J. (2002). Natural history of mild cognitive impairment in older persons. Neurology, 59(2), 198–205. https://doi.org/10.1212/wnl.59.2.198
  • Blennow, K., & Zetterberg, H. (2018). Biomarkers for Alzheimer’s disease: Current status and prospects for the future. Journal of Internal Medicine, 284(6), 643–663. https://doi.org/10.1111/joim.12816
  • Braak, H., & Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 138(10), 2814–2833. https://doi.org/10.1093/brain/awv236
  • Brier, M. R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., Owen, C., Aldea, P., Su, Y., Hassenstab, J., Cairns, N. J., Holtzman, D. M., Fagan, A. M., Morris, J. C., Benzinger, T. L. S., & Ances, B. M. (2016). Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Science Translational Medicine, 8(338), 338ra66. https://doi.org/10.1126/scitranslmed.aaf2362
  • Bruno, D., Gleason, C. E., Koscik, R. L., Pomara, N., Zetterberg, H., Blennow, K., & Johnson, S. C. (2019). The recency ratio is related to CSF amyloid beta 1-42 levels in MCI-AD. International Journal of Geriatric Psychiatry, 34(3), 415–419. https://doi.org/10.1002/gps.5029
  • Bruno, D., Grothe, M. J., Nierenberg, J., Zetterberg, H., Blennow, K., Teipel, S. J., & Pomara, N. (2015). A study on the specificity of the association between hippocampal volume and delayed primacy performance in cognitively intact elderly individuals. Neuropsychologia, 69, 1–8. https://doi.org/10.1016/j.neuropsychologia.2015.01.025
  • Bruno, D., Jauregi Zinkunegi, A., Kollmorgen, G., Suridjan, I., Wild, N., Carlsson, C., Bendlin, B., Okonkwo, O., Chin, N., Hermann, B. P., Asthana, S., Zetterberg, H., Blennow, K., Langhough, R., Johnson, S. C., & Mueller, K. D. (2023). The recency ratio assessed by story recall is associated with cerebrospinal fluid levels of neurodegeneration biomarkers. Cortex, 159, 167–174. https://doi.org/10.1016/j.cortex.2022.12.004
  • Bruno, D., Koscik, R. L., Woodard, J. L., Pomara, N., & Johnson, S. C. (2018). The recency ratio as predictor of early MCI. International Psychogeriatrics, 30(12), 1883–1888. https://doi.org/10.1017/S1041610218000467
  • Bruno, D., Mueller, K. D., Betthauser, T., Chin, N., Engelman, C. D., Christian, B., Koscik, R. L., & Johnson, S. C. (2021). Serial position effects in the logical memory test: Loss of primacy predicts amyloid positivity. Journal of Neuropsychology, 15(3), 448–461. https://doi.org/10.1111/jnp.12235
  • Bruno, D., Reichert, C., & Pomara, N. (2016). The recency ratio as an index of cognitive performance and decline in elderly individuals. Journal of Clinical and Experimental Neuropsychology, 38(9), 967–973. https://doi.org/10.1080/13803395.2016.1179721
  • Buchman, A. S., Leurgans, S. E., Nag, S., Bennett, D. A., & Schneider, J. A. (2011). Cerebrovascular disease pathology and Parkinsonian signs in old age. Stroke, 42, 3183–3189. https://doi.org/10.1161/STROKEAHA.111.623462
  • Calcetas, A. T., Thomas, K. R., Edmonds, E. C., Holmqvist, S. L., Edwards, L., Bordyug, M., Delano-Wood, L., Brickman, A. M., Bondi, M. W., & Bangen, K. J., The Alzheimer’s Disease Neuroimaging Initiative. (2022). Increased regional white matter hyperintensity volume in objectively-defined subtle cognitive decline and mild cognitive impairment. Neurobiology of Aging, 118 1–8. https://doi.org/10.1016/j.neurobiolaging.2022.06.002
  • Cerami, C., Dubois, B., Boccardi, M., Monsch, A. U., Demonet, J. F., & Cappa, S. F. 2017. Clinical validity of delayed recall tests as a gateway biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiology of Aging, 52 Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers, 153–166. https://doi.org/10.1016/j.neurobiolaging.2016.03.034
  • Cunha, C., Guerreiro, M., de Mendonça, A., Oliveira, P. E., & Santana, I. (2012). Serial position effects in Alzheimer’s disease, mild cognitive impairment, and normal aging: Predictive value for conversion to dementia. Journal of Clinical and Experimental Neuropsychology, 34(8), 841–852. https://doi.org/10.1080/13803395.2012.689814
  • Fagan, A. M., Xiong, C., Jasielec, M. S., Bateman, R. J., Goate, A. M., Benzinger, T. L. S., Ghetti, B., Martins, R. N., Masters, C. L., Mayeux, R., Ringman, J. M., Rossor, M. N., Salloway, S., Schofield, P. R., Sperling, R. A., Marcus, D., Cairns, N. J., Buckles, V. D., & Ladenson, J. H. (2014). Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Science Translational Medicine, 6(226), 226ra30. Dominantly Inherited Alzheimer Network. https://doi.org/10.1126/scitranslmed.3007901
  • Foldi, N. S., Brickman, A. M., Schaefer, L. A., & Knutelska, M. E. (2003). Distinct serial position profiles and neuropsychological measures differentiate late life depression from normal aging and Alzheimer’s disease. Psychiatry Research, 120(1), 71–84. https://doi.org/10.1016/s0165-1781(03)00163-x
  • Garibotto, V., Boccardi, M., Chiti, A., & Frisoni, G. B. (2021). Molecular imaging and fluid biomarkers of Alzheimer’s disease neuropathology: An opportunity for integrated diagnostics. European Journal of Nuclear Medicine and Molecular Imaging, 48(7), 2067–2069. https://doi.org/10.1007/s00259-020-05116-y
  • Gicas, K. M., Honer, W. G., Leurgans, S. E., Wilson, R. S., Boyle, P. A., Schneider, J. A., & Bennett, D. A. (2022). Longitudinal change in serial position scores in older adults with entorhinal and hippocampal neuropathologies. Journal of the International Neuropsychological Society, 1–11. https://doi.org/10.1017/S1355617722000595
  • Gicas, K. M., Honer, W. G., Wilson, R. S., Boyle, P. A., Leurgans, S. E., Schneider, J. A., & Bennett, D. A. (2020). Association of serial position scores on memory tests and hippocampal-related neuropathologic outcomes. Neurology, 95(24), e3303–e3312. https://doi.org/10.1212/WNL.0000000000010952
  • Hermann, B. P., Seidenberg, M., Wyler, A., Davies, K., Christeson, J., Moran, M., & Stroup, E. (1996). The effects of human hippocampal resection on the serial position curve. Cortex, 32(2), 323–334. https://doi.org/10.1016/s0010-9452(96)80054-2
  • Howieson, D. B., Mattek, N., Seeyle, A. M., Dodge, H. H., Wasserman, D., Zitzelberger, T., & Kaye, J. A. (2011). Serial position effects in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 33(3), 292–299. https://doi.org/10.1080/13803395.2010.516742
  • Innocenti, I., Cappa, S. F., Feurra, M., Giovannelli, F., Santarnecchi, E., Bianco, G., Cincotta, M., & Rossi, S. (2013). TMS interference with primacy and recency mechanisms reveals bimodal episodic encoding in the human brain. Journal of Cognitive Neuroscience, 25(1), 109–116. https://doi.org/10.1162/jocn_a_00304
  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., & Contributors. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018
  • Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6
  • Janelidze, S., Berron, D., Smith, R., Strandberg, O., Proctor, N. K., Dage, J. L., Stomrud, E., Palmqvist, S., Mattsson-Carlgren, N., & Hansson, O. (2021). Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurology, 78(2), 149–156. https://doi.org/10.1001/jamaneurol.2020.4201
  • Janelidze, S., Mattsson, N., Palmqvist, S., Smith, R., Beach, T. G., Serrano, G. E., Chai, X., Proctor, N. K., Eichenlaub, U., Zetterberg, H., Blennow, K., Reiman, E. M., Stomrud, E., Dage, J. L., & Hansson, O. (2020). Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nature Medicine, 26(3), 379–386. https://doi.org/10.1038/s41591-020-0755-1
  • Janelidze, S., Stomrud, E., Smith, R., Palmqvist, S., Mattsson, N., Airey, D. C., Proctor, N. K., Chai, X., Shcherbinin, S., Sims, J. R., Triana-Baltzer, G., Theunis, C., Slemmon, R., Mercken, M., Kolb, H., Dage, J. L., & Hansson, O. (2020). Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nature Communications, 11, 1683. https://doi.org/10.1038/s41467-020-15436-0
  • Jedynak, B. M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B. T., Raunig, D., Jedynak, C. P., Caffo, B., & Prince, J. L., & Alzheimer’s Disease Neuroimaging Initiative. (2012). A computational neurodegenerative disease progression score: Method and results with the Alzheimer’s disease Neuroimaging Initiative cohort. NeuroImage, 63 (3), 1478–1486. https://doi.org/10.1016/j.neuroimage.2012.07.059
  • La Rue, A., Hermann, B., Jones, J. E., Johnson, S., Asthana, S., & Sager, M. A. (2008). Effect of parental family history of Alzheimer’s disease on serial position profiles. Alzheimer’s & Dementia, 4(4), 285–290. https://doi.org/10.1016/j.jalz.2008.03.009
  • Loewenstein, D. A., Curiel, R. E., Greig, M. T., Bauer, R. M., Rosado, M., Bowers, D., Wicklund, M., Crocco, E., Pontecorvo, M., Joshi, A. D., Rodriguez, R., Barker, W. W., Hidalgo, J., & Duara, R. (2016). A novel cognitive stress test for the detection of preclinical Alzheimer disease: Discriminative properties and relation to amyloid load. The American Journal of Geriatric Psychiatry, 24(10), 804–813. https://doi.org/10.1016/j.jagp.2016.02.056
  • Love, S., Chalmers, K., Ince, P., Esiri, M., Attems, J., Jellinger, K., Yamada, M., McCarron, M., Minett, T., Matthews, F., Greenberg, S., Mann, D., & Kehoe, P. G. (2014). Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post-mortem brain tissue. American Journal of Neurodegenerative Disease, 3(1), 19–32.
  • Luna-Muñoz, J., Chávez-Macías, L., García-Sierra, F., & Mena, R. (2007). Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. Journal of Alzheimer’s Disease, 12(4), 365–375. https://doi.org/10.3233/jad-2007-12410
  • Malmberg, K. J., Raaijmakers, J. G. W., & Shiffrin, R. M. (2019). 50 years of research sparked by Atkinson and Shiffrin (1968). Memory & Cognition, 47(4), 561–574. https://doi.org/10.3758/s13421-019-00896-7
  • McDade, E., Wang, G., Gordon, B. A., Hassenstab, J., Benzinger, T. L. S., Buckles, V., Fagan, A. M., Holtzman, D. M., Cairns, N. J., Goate, A. M., Marcus, D. S., Morris, J. C., Paumier, K., Xiong, C., Allegri, R., Berman, S. B., Klunk, W., Noble, J., & Ringman, J. (2018). Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology, 91(14), e1295–e1306. Dominantly Inherited Alzheimer Network. https://doi.org/10.1212/WNL.0000000000006277
  • Mielke, M. M., Aakre, J. A., Algeciras-Schimnich, A., Proctor, N. K., Machulda, M. M., Eichenlaub, U., Knopman, D. S., Vemuri, P., Graff-Radford, J., Jack, C. R., Petersen, R. C., & Dage, J. L. (2022). Comparison of CSF phosphorylated tau 181 and 217 for cognitive decline. Alzheimer’s & Dementia, 18(4), 602–611. https://doi.org/10.1002/alz.12415
  • Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., Mellits, E. D., & Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165. https://doi.org/10.1212/wnl.39.9.1159
  • Moser, B., Deisenhammer, E. A., Marksteiner, J., Papousek, I., Fink, A., & Weiss, E. M. (2014). Serial position effects in patients with mild cognitive impairment and early and moderate Alzheimer’s disease compared with healthy comparison subjects. Dementia and Geriatric Cognitive Disorders, 37(1–2), 19–26. https://doi.org/10.1159/000351675
  • Murdock, B. B., Jr. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64(5), 482–488. https://doi.org/10.1037/h0045106
  • Nag, S., Yu, L., Boyle, P. A., Leurgans, S. E., Bennett, D. A., & Schneider, J. A. (2018). TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathologica Communications, 6, 33. https://doi.org/10.1186/s40478-018-0531-3
  • Nag, S., Yu, L., Capuano, A. W., Wilson, R. S., Leurgans, S. E., Bennett, D. A., & Schneider, J. A. (2015). Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer’s disease. Annals of Neurology, 77, 942–952. https://doi.org/10.1002/ana.24388
  • Neddens, J., Temmel, M., Flunkert, S., Kerschbaumer, B., Hoeller, C., Loeffler, T., Niederkofler, V., Daum, G., Attems, J., & Hutter-Paier, B. (2018). Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathologica Communications, 6(1), 52. https://doi.org/10.1186/s40478-018-0557-6
  • Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J., Castellani, R. J., Crain, B. J., Davies, P., Del Tredici, K., Duyckaerts, C., Frosch, M. P., Haroutunian, V., Hof, P. R., Hulette, C. R., Hyman, B. T., Iwatsubo, T., Jellinger, K. A., Jicha, G. A., & Beach, T. G. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. Journal of Neuropathology and Experimental Neurology, 71(5), 362–381. https://doi.org/10.1097/NEN.0b013e31825018f7
  • O’Shea, D. M., Thomas, K. R., Asken, B., Lee, A. K. W., Davis, J. D., Malloy, P. F., Salloway, S. P., & Correia, S. (2021). Adding cognition to AT(N) models improves prediction of cognitive and functional decline. Alzheimer’s & Dementia, 13(1), e12174. https://doi.org/10.1002/dad2.12174
  • Palmqvist, S., Tideman, P., Cullen, N., Zetterberg, H., Blennow, K., Alzheimer’s Disease, N. I., Dage, J. L., Stomrud, E., Janelidze, S., Mattsson-Carlgren, N., & Hansson, O. (2021). Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nature Medicine, 27(6), 1034–1042. https://doi.org/10.1038/s41591-021-01348-z
  • Pichet Binette, A., Palmqvist, S., Bali, D., Farrar, G., Buckley, C. J., Wolk, D. A., Zetterberg, H., Blennow, K., Janelidze, S., & Hansson, O. (2022). Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer’s dementia in mild cognitive impairment patients. Alzheimer’s Research & Therapy, 14(1), 46. https://doi.org/10.1186/s13195-022-00990-0
  • Shen, X.-N., Huang, -Y.-Y., Chen, S.-D., Guo, Y., Tan, L., Dong, Q., & Yu, J.-T. (2021). Plasma phosphorylated-tau181 as a predictive biomarker for Alzheimer’s amyloid, tau and FDG PET status. Translational Psychiatry, 11(1), Article 1. https://doi.org/10.1038/s41398-021-01709-9
  • Sperling, R., Mormino, E., & Johnson, K. (2014). The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 84(3), 608–622. https://doi.org/10.1016/j.neuron.2014.10.038
  • Talamonti, D., Koscik, R., Johnson, S., & Bruno, D. (2019). Predicting early mild cognitive impairment with free recall: The primacy of primacy. Archives of Clinical Neuropsychology, 35(2), 133–142. https://doi.org/10.1093/arclin/acz013
  • Talmi, D., Grady, C. L., Goshen-Gottstein, Y., & Moscovitch, M. (2005). Neuroimaging the serial position curve. A test of single-store versus dual-store models. Psychological Science, 16(9), 716–723. https://doi.org/10.1111/j.1467-9280.2005.01601.x
  • Thomas, K. R., Bangen, K. J., Edmonds, E. C., Weigand, A. J., Walker, K. S., Bondi, M. W., & Galasko, D. R. (2021). Objective subtle cognitive decline and plasma phosphorylated tau181: Early markers of Alzheimer’s disease‐related declines. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12238. https://doi.org/10.1002/dad2.12238
  • Thomas, K. R., Bangen, K. J., Weigand, A. J., Edmonds, E. C., Wong, C. G., Cooper, S., Delano-Wood, L., & Bondi, M. W., & Alzheimer’s Disease Neuroimaging Initiative. (2020). Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration. Neurology, 94 (4), e397–e406. https://doi.org/10.1212/WNL.0000000000008838
  • Thomas, K. R., Edmonds, E. C., Eppig, J., Salmon, D. P., & Bondi, M. W., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Using neuropsychological process scores to identify subtle cognitive decline and predict progression to mild cognitive impairment. Journal of Alzheimer’s Disease, 64 (1), 195–204. https://doi.org/10.3233/JAD-180229
  • Thomas, K. R., Weigand, A. J., Edwards, L. C., Edmonds, E. C., Bangen, K. J., Ortiz, G., Walker, K. S., & Bondi, M. W., & Alzheimer’s Disease Neuroimaging Initiative. (2022). Tau levels are higher in objective subtle cognitive decline but not subjective memory complaint. Alzheimer’s Research & Therapy, 14 (1), 114. https://doi.org/10.1186/s13195-022-01060-1
  • Trelle, A. N., Carr, V. A., Wilson, E. N., Swarovski, M. S., Hunt, M. P., Toueg, T. N., Tran, T. T., Channappa, D., Corso, N. K., Thieu, M. K., Jayakumar, M., Nadiadwala, A., Guo, W., Tanner, N. J., Bernstein, J. D., Litovsky, C. P., Guerin, S. A., Khazenzon, A. M., Harrison, M. B., & Mormino, E. C. (2021). Association of CSF biomarkers with hippocampal-dependent memory in preclinical Alzheimer disease. Neurology, 96(10), e1470–e1481. https://doi.org/10.1212/WNL.0000000000011477
  • Weitzner, D. S., & Calamia, M. (2020). Serial position effects on list learning tasks in mild cognitive impairment and Alzheimer’s disease. Neuropsychology, 34(4), 467–478. https://doi.org/10.1037/neu0000620
  • Wennström, M., Janelidze, S., Nilsson, K. P. R., The Netherlands Brain Bank, S., Beach, G. E., Dage, J. L., & Hansson, O. (2022). Cellular localization of p-tau217 in brain and its association with p-tau217 plasma levels. Acta Neuropathologica Communications, 10(3), 1–12. https://doi.org/10.1186/s40478-021-01305-4
  • Wilson, R. S., Yang, J., Yu, L., Leurgans, S. E., Capuano, A. W., Schneider, J. A., Bennett, D. A., & Boyle, P. A. (2019). Postmortem neurodegenerative markers and trajectories of decline in cognitive systems. Neurology, 92(8), e831–e840. https://doi.org/10.1212/WNL.0000000000006949
  • Yu, L., Petyuk, V. A., Gaiteri, C., Mostafavi, S., Young-Pearse, T., Shah, R. C., Buchman, A. S., Schneider, J. A., Piehowski, P. D., Sontag, R. L., Fillmore, T. L., Shi, T., Smith, R. D., De Jager, P. L., & Bennett, D. A. (2018). Targeted brain proteomics uncover multiple pathways to Alzheimer’s dementia. Annals of Neurology, 84(1), 78–88. https://doi.org/10.1002/ana.25266

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.