95
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The oral microbial odyssey influencing chronic metabolic disease

&
Received 11 Nov 2023, Accepted 03 Dec 2023, Published online: 25 Dec 2023

References

  • The Human Microbiome Project Consortium, 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.
  • Aas, J.A., et al., 2005. Defining the normal bacterial flora of the oral cavity. Journal of clinical microbiology, 43 (11), 5721–5732. doi: 10.1128/JCM.43.11.5721-5732.2005.
  • Abusleme, L., et al., 2013. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME journal, 7 (5), 1016–1025. doi: 10.1038/ismej.2012.174.
  • Ai, D., et al., 2017. Integrated metagenomic data analysis demonstrates that a loss of diversity in oral microbiota is associated with periodontitis. BMC genomics, 18 (Suppl 1), 1041. doi: 10.1186/s12864-016-3254-5.
  • Al-Janabi, A., 2023. A positive or negative connection of diabetes mellitus to the oral microbiota. The Eurasian journal of medicine, 55 (1), 83–89. doi: 10.5152/eurasianjmed.2023.21164.
  • Almeida, V.D.S.M., et al., 2020. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS one, 15 (9), e0239664. doi: 10.1371/journal.pone.0239664.
  • Almeida-Santos, A., et al., 2021. Characterization of the oral microbiome of medicated type-2 diabetes patients. Frontiers in microbiology, 12, 610370. doi: 10.3389/fmicb.2021.610370.
  • Aoyama, N., et al., 2017. Detrimental effects of specific Periodontopathic bacterial infection on tachyarrhythmia compared to Bradyarrhythmia. BMC cardiovascular disorders, 17 (1), 267. doi: 10.1186/s12872-017-0703-2.
  • Arimatsu, K., et al., 2014. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Scientific reports, 4 (1), 4828. doi: 10.1038/srep04828.
  • Atarashi, K., et al., 2017. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science, 358 (6361), 359–365. doi: 10.1126/science.aan4526.
  • Bao, J., et al., 2022. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota. International journal of oral science, 14 (1), 32. doi: 10.1038/s41368-022-00183-3.
  • Benahmed, A.G., et al., 2021. Association between the gut and oral microbiome with obesity. Anaerobe, 70, 102248. doi: 10.1016/j.anaerobe.2020.102248.
  • Bernard, A., et al., 2022. A specific tongue microbiota signature is found in patients displaying an improvement of orosensory lipid perception after a sleeve gastrectomy. Frontiers in nutrition, 9, 1046454. doi: 10.3389/fnut.2022.1046454.
  • Bhattacharya, R., et al., 2014. Effect of bacteria on the wound healing behavior of oral epithelial cells. PLoS one, 9 (2), e89475. doi: 10.1371/journal.pone.0089475.
  • Bombin, A., et al., 2022. Obesity influences composition of salivary and fecal microbiota and impacts the interactions between bacterial taxa. Physiological reports, 10 (7), e15254. doi: 10.14814/phy2.15254.
  • Bouzid, F., et al., 2022. A potential oral microbiome signature associated with coronary artery disease in Tunisia. Bioscience reports, 42 (7), BSR20220583. doi: 10.1042/BSR20220583.
  • Carelli, M., et al., 2023. Oral microbiota in children and adolescents with type 1 diabetes mellitus: novel insights into the pathogenesis of dental and periodontal disease. Microorganisms, 11 (3), 668. doi: 10.3390/microorganisms11030668.
  • Caselli, E., et al., 2020. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC microbiology, 20 (1), 120. doi: 10.1186/s12866-020-01801-y.
  • Cekici, A., et al., 2014. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64 (1), 57–80. doi: 10.1111/prd.12002.
  • Chhibber-Goel, J., et al., 2016. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ biofilms and microbiomes, 2 (1), 7. doi: 10.1038/s41522-016-0009-7.
  • Cho, Y.-D., et al., 2021. Oral microbiome and host health: review on current advances in genome-wide analysis. Applied sciences, 11 (9), 4050. doi: 10.3390/app11094050.
  • Craig, S.J., et al., 2018. Child weight gain trajectories linked to oral microbiota composition. Scientific reports, 8 (1), 14030. doi: 10.1038/s41598-018-31866-9.
  • Czerniuk, M.R., et al., 2022. Unexpected relationships: periodontal diseases: atherosclerosis–plaque destabilization? From the teeth to a coronary event. Biology, 11 (2), 272. doi: 10.3390/biology11020272.
  • D’aiuto, F., et al., 2018. Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial. The lancet. Diabetes & endocrinology, 6 (12), 954–965. doi: 10.1016/S2213-8587(18)30038-X.
  • Dassi, E., et al., 2018. The short-term impact of probiotic consumption on the oral cavity microbiome. Scientific reports, 8 (1), 10476. doi: 10.1038/s41598-018-28491-x.
  • Deng, Z.-L., et al., 2017. Dysbiosis in chronic periodontitis: key microbial players and interactions with the human host. Scientific reports, 7 (1), 3703. doi: 10.1038/s41598-017-03804-8.
  • Deo, P.N., and Deshmukh, R., 2019. Oral microbiome: unveiling the fundamentals. Journal of oral and maxillofacial pathology: JOMFP, 23 (1), 122–128. doi: 10.4103/jomfp.JOMFP_304_18.
  • Dey, P., 2019. Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacological research, 147, 104367. doi: 10.1016/j.phrs.2019.104367.
  • Dey, P., 2020a. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life sciences, 258, 118172. doi: 10.1016/j.lfs.2020.118172.
  • Dey, P., 2020b. Targeting gut barrier dysfunction with phytotherapies: effective strategy against chronic diseases. Pharmacological research, 161, 105135. doi: 10.1016/j.phrs.2020.105135.
  • Dey, P., et al., 2021. The intestinal 3M (microbiota, metabolism, metabolome) Zeitgeist–from fundamentals to future challenges. Free radical biology & medicine, 176, 265–285. doi: 10.1016/j.freeradbiomed.2021.09.026.
  • Dey, P., and Ray Chaudhuri, S., 2022a. Cancer-associated microbiota: from mechanisms of disease causation to microbiota-centric anti-cancer approaches. Biology, 11 (5), 757. doi: 10.3390/biology11050757.
  • Dey, P., and Ray Chaudhuri, S., 2022b. The opportunistic nature of gut commensal microbiota. Critical reviews in microbiology, 49 (6), 739–763. doi: 10.1080/1040841X.2022.2133987.
  • Du Teil Espina, M., et al., 2019. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS microbiology reviews, 43 (1), 1–18. doi: 10.1093/femsre/fuy035.
  • Farina, R., et al., 2019. Whole metagenomic shotgun sequencing of the subgingival microbiome of diabetics and non-diabetics with different periodontal conditions. Archives of oral biology, 104, 13–23. doi: 10.1016/j.archoralbio.2019.05.025.
  • Fernandes, C.P., et al., 2014. Molecular analysis of oral bacteria in dental biofilm and atherosclerotic plaques of patients with vascular disease. International journal of cardiology, 174 (3), 710–712. doi: 10.1016/j.ijcard.2014.04.201.
  • Finelli, C., et al., 2014. Could the improvement of obesity-related co-morbidities depend on modified gut hormones secretion? World journal of gastroenterology, 20 (44), 16649–16664. doi: 10.3748/wjg.v20.i44.16649.
  • Ge, X., et al., 2013. Oral microbiome of deep and shallow dental pockets in chronic periodontitis. PLoS one, 8 (6), e65520. doi: 10.1371/journal.pone.0065520.
  • Georges, F., Do, N., and Seleem, D., 2022. Oral dysbiosis and systemic diseases. Frontiers in dental medicine, 3, 995423. doi: 10.3389/fdmed.2022.995423.
  • Goodson, J., et al., 2009. Is obesity an oral bacterial disease? Journal of dental research, 88 (6), 519–523. doi: 10.1177/0022034509338353.
  • Griffen, A.L., et al., 2012. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME journal, 6 (6), 1176–1185. doi: 10.1038/ismej.2011.191.
  • Grønkjær, L.L., 2015. Periodontal disease and liver cirrhosis: a systematic review. SAGE open medicine, 3, 2050312115601122. doi: 10.1177/2050312115601122.
  • Guo, X.-J., et al., 2023. Distribution characteristics of oral microbiota and its relationship with intestinal microbiota in patients with type 2 diabetes mellitus. Frontiers in endocrinology, 14, 1119201. doi: 10.3389/fendo.2023.1119201.
  • Gupta, U., and Dey, P., 2023. Rise of the guardians: gut microbial maneuvers in bacterial infections. Life sciences, 330, 121993. doi: 10.1016/j.lfs.2023.121993.
  • Hajishengallis, G., 2015. Periodontitis: from microbial immune subversion to systemic inflammation. Nature reviews. Immunology, 15 (1), 30–44. doi: 10.1038/nri3785.
  • Hajishengallis, G., and Lambris, J.D., 2011. Microbial manipulation of receptor crosstalk in innate immunity. Nature reviews. Immunology, 11 (3), 187–200. doi: 10.1038/nri2918.
  • Hajishengallis, G., et al., 2011. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell host & microbe, 10 (5), 497–506. doi: 10.1016/j.chom.2011.10.006.
  • Haraga, H., et al., 2022. Effect of the progression of Fusobacterium nucleatum-induced apical periodontitis on the gut microbiota. Journal of endodontics, 48 (8), 1038–1045. doi: 10.1016/j.joen.2022.04.014.
  • Haraszthy, V.I., et al., 2000. Identification of periodontal pathogens in atheromatous plaques. Journal of periodontology, 71 (10), 1554–1560. doi: 10.1902/jop.2000.71.10.1554.
  • Hoare, A., et al., 2019. Chronic inflammation as a link between periodontitis and carcinogenesis. Mediators of inflammation, 2019, 1029857–1029914. doi: 10.1155/2019/1029857.
  • Hosomi, N., et al., 2012. Association of serum anti-periodontal pathogen antibody with ischemic stroke. Cerebrovascular diseases, 34 (5-6), 385–392. doi: 10.1159/000343659.
  • Hsaine, S., et al., 2018. Microbiological study of oral flora in diabetic patients with gingivitis. International journal of pharmacy and pharmaceutical sciences, 10 (6), 113–116. doi: 10.22159/ijpps.2018v10i6.26295.
  • Jain, A., et al., 2020. Management of periodontal disease in patients with diabetes- good clinical practice guidelines: a joint statement by Indian Society of Periodontology and Research Society for the Study of Diabetes in India. Journal of Indian Society of Periodontology, 24 (6), 498–524. doi: 10.4103/jisp.jisp_688_20.
  • Jenkinson, H.F., and Lamont, R.J., 2005. Oral microbial communities in sickness and in health. Trends in microbiology, 13 (12), 589–595. doi: 10.1016/j.tim.2005.09.006.
  • Jensen, E.D., et al., 2021. Early markers of periodontal disease and altered oral microbiota are associated with glycemic control in children with type 1 diabetes. Pediatric diabetes, 22 (3), 474–481. doi: 10.1111/pedi.13170.
  • Jönsson, D., et al., 2020. Periodontal disease is associated with carotid plaque area: the Malmö Offspring Dental Study (MODS). Journal of internal medicine, 287 (3), 301–309. doi: 10.1111/joim.12998.
  • Kaci, G., et al., 2014. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Applied and environmental microbiology, 80 (3), 928–934. doi: 10.1128/AEM.03133-13.
  • Kato, I., et al., 2017. Nutritional correlates of human oral microbiome. Journal of the American College of Nutrition, 36 (2), 88–98. doi: 10.1080/07315724.2016.1185386.
  • Kaufman, A., et al., 2020. Taste loss with obesity in mice and men. International journal of obesity (2005), 44 (3), 739–743. doi: 10.1038/s41366-019-0429-6.
  • Kaur, N., and Dey, P., 2022. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Research in microbiology, 174 (4), 104024. doi: 10.1016/j.resmic.2022.104024.
  • Kilian, M., et al., 2016. The oral microbiome–an update for oral healthcare professionals. British dental journal, 221 (10), 657–666. doi: 10.1038/sj.bdj.2016.865.
  • Kim, J.-Y., et al., 2020. Association between fatty liver index and periodontitis: the Korea national health and nutrition examination survey. Scientific reports, 10 (1), 3805. doi: 10.1038/s41598-020-60797-7.
  • Kolodziejczyk, A.A., et al., 2019. The role of the microbiome in NAFLD and NASH. EMBO molecular medicine, 11 (2), e9302. doi: 10.15252/emmm.201809302.
  • Komazaki, R., et al., 2017. Periodontal pathogenic bacteria, Aggregatibacter actinomycetemcomitans affect non-alcoholic fatty liver disease by altering gut microbiota and glucose metabolism. Scientific reports, 7 (1), 13950. doi: 10.1038/s41598-017-14260-9.
  • Konkel, J.E., O’boyle, C., and Krishnan, S., 2019. Distal consequences of oral inflammation. Frontiers in immunology, 10, 1403. doi: 10.3389/fimmu.2019.01403.
  • Könönen, E., 2000. Development of oral bacterial flora in young children. Annals of medicine, 32 (2), 107–112. doi: 10.3109/07853890009011759.
  • Koren, O., et al., 2011. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 108 (Suppl 1), 4592–4598. doi: 10.1073/pnas.1011383107.
  • Krasse, P., et al., 2006. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swedish dental journal, 30 (2), 55–60.
  • Kuraji, R., et al., 2021. Periodontal disease–related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an emerging concept of oral-liver axis. Periodontology 2000, 87 (1), 204–240. doi: 10.1111/prd.12387.
  • Kuraji, R., et al., 2023. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World journal of gastroenterology, 29 (6), 967–996. doi: 10.3748/wjg.v29.i6.967.
  • Lalla, E., and Papapanou, P.N., 2011. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nature reviews. Endocrinology, 7 (12), 738–748. doi: 10.1038/nrendo.2011.106.
  • Lamonte, M.J., et al., 2022. Oral microbiome is associated with incident hypertension among postmenopausal women. Journal of the American Heart Association, 11 (6), e021930. doi: 10.1161/JAHA.121.021930.
  • Lê, S., et al., 2023. Obesity is associated with the severity of periodontal inflammation due to a specific signature of subgingival microbiota. International journal of molecular sciences, 24 (20), 15123. doi: 10.3390/ijms242015123.
  • Lei, W.-Y., et al., 2009. Pyogenic liver abscess with Prevotella species and Fusobacterium necrophorum as causative pathogens in an immunocompetent patient. Journal of the Formosan Medical Association = Taiwan yi zhi, 108 (3), 253–257. doi: 10.1016/S0929-6646(09)60060-7.
  • Li, B., et al., 2019. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. International journal of oral science, 11 (1), 10. doi: 10.1038/s41368-018-0043-9.
  • Li, C., et al., 2022a. A genetic association study reveals the relationship between the oral microbiome and anxiety and depression symptoms. Frontiers in psychiatry, 13, 960756. doi: 10.3389/fpsyt.2022.960756.
  • Li, X., et al., 2022b. The oral microbiota: community composition, influencing factors, pathogenesis, and interventions. Frontiers in microbiology, 13, 895537. doi: 10.3389/fmicb.2022.895537.
  • Li, Y., et al., 2022c. The oral microbiota and cardiometabolic health: a comprehensive review and emerging insights. Frontiers in immunology, 13, 1010368. doi: 10.3389/fimmu.2022.1010368.
  • Lim, Y., et al., 2017. Oral microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics, 7 (17), 4313–4321. doi: 10.7150/thno.21804.
  • Lourenςo, T.G.B., et al., 2018. Defining the gut microbiota in individuals with periodontal diseases: an exploratory study. Journal of oral microbiology, 10 (1), 1487741. doi: 10.1080/20002297.2018.1487741.
  • Lucchese, A., 2017. Streptococcus mutans antigen I/II and autoimmunity in cardiovascular diseases. Autoimmunity reviews, 16 (5), 456–460. doi: 10.1016/j.autrev.2017.03.009.
  • Manabe, Y., et al., 2023. Gut dysbiosis is associated with aortic aneurysm formation and progression in Takayasu arteritis. Arthritis research & therapy, 25 (1), 46. doi: 10.1186/s13075-023-03031-9.
  • Marsh, P.D., 2000. Role of the oral microflora in health. Microbial ecology in health and disease, 12 (3), 130–137. doi: 10.1080/089106000750051800.
  • Marsh, P.D., Head, D.A., and Devine, D.A., 2015. Ecological approaches to oral biofilms: control without killing. Caries research, 49 (Suppl. 1), 46–54. doi: 10.1159/000377732.
  • Mason, M.R., et al., 2018. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome, 6 (1), 67. doi: 10.1186/s40168-018-0443-2.
  • Matsha, T.E., et al., 2020. Oral microbiome signatures in diabetes mellitus and periodontal disease. Journal of dental research, 99 (6), 658–665. doi: 10.1177/0022034520913818.
  • Mclean, J.S., 2014. Advancements toward a systems level understanding of the human oral microbiome. Frontiers in cellular and infection microbiology, 4, 98. doi: 10.3389/fcimb.2014.00098.
  • Meghil, M.M., and Cutler, C.W., 2020. Oral microbes and mucosal dendritic cells,“spark and flame” of local and distant inflammatory diseases. International journal of molecular sciences, 21 (5), 1643. doi: 10.3390/ijms21051643.
  • Minty, M., et al., 2019. Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. Reviews in endocrine & metabolic disorders, 20 (4), 449–459. doi: 10.1007/s11154-019-09526-8.
  • Nagasaki, A., et al., 2020. Odontogenic infection by Porphyromonas gingivalis exacerbates fibrosis in NASH via hepatic stellate cell activation. Scientific reports, 10 (1), 4134. doi: 10.1038/s41598-020-60904-8.
  • Nakajima, M., et al., 2015. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS one, 10 (7), e0134234. doi: 10.1371/journal.pone.0134234.
  • Nakano, K., et al., 2006. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. Journal of clinical microbiology, 44 (9), 3313–3317. doi: 10.1128/JCM.00377-06.
  • Nascimento, M.M., 2017. Oral microbiota transplant: a potential new therapy for oral diseases. Journal of the California Dental Association, 45 (10), 565–568.
  • Negrini, T.D.C., et al., 2021. Interplay among the oral microbiome, oral cavity conditions, the host immune response, diabetes mellitus, and its associated-risk factors—an overview. Frontiers in oral health, 2, 697428. doi: 10.3389/froh.2021.697428.
  • Neuman, H., et al., 2015. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS microbiology reviews, 39 (4), 509–521. doi: 10.1093/femsre/fuu010.
  • Nishihara, T., et al., 2014. Effects of Lactobacillus salivarius-containing tablets on caries risk factors: a randomized open-label clinical trial. BMC oral health, 14 (1), 110. doi: 10.1186/1472-6831-14-110.
  • Nordendahl, E., et al., 2018. Severe periodontitis is associated with myocardial infarction in females. Journal of dental research, 97 (10), 1114–1121. doi: 10.1177/0022034518765735.
  • Ogawa, T., et al., 2018. Composition of salivary microbiota in elderly subjects. Scientific reports, 8 (1), 414. doi: 10.1038/s41598-017-18677-0.
  • Olsen, I., and Yilmaz, Ö., 2019. Possible role of Porphyromonas gingivalis in orodigestive cancers. Journal of oral microbiology, 11 (1), 1563410. doi: 10.1080/20002297.2018.1563410.
  • Patil, S., et al., 2013. Oral microbial flora in health. World journal of dentistry, 4 (4), 262–266. doi: 10.5005/jp-journals-10015-1242.
  • Paudel, D., et al., 2022. Effect of psychological stress on the oral-gut microbiota and the potential oral-gut-brain axis. The Japanese dental science review, 58, 365–375. doi: 10.1016/j.jdsr.2022.11.003.
  • Peterson, J., et al., 2009. The NIH human microbiome project. Genome research, 19 (12), 2317–2323. doi: 10.1101/gr.096651.109.
  • Pihlstrom, B.L., Michalowicz, B.S., and Johnson, N.W., 2005. Periodontal diseases. Lancet, 366 (9499), 1809–1820. doi: 10.1016/S0140-6736(05)67728-8.
  • Piombino, P., et al., 2014. Saliva from obese individuals suppresses the release of aroma compounds from wine. PLoS One, 9 (1), e85611. doi: 10.1371/journal.pone.0085611.
  • Plachokova, A.S., et al., 2021. Oral microbiome in relation to periodontitis severity and systemic inflammation. International journal of molecular sciences, 22 (11), 5876. doi: 10.3390/ijms22115876.
  • Polak, D., and Shapira, L., 2018. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. Journal of clinical periodontology, 45 (2), 150–166. doi: 10.1111/jcpe.12803.
  • Qin, N., et al., 2014. Alterations of the human gut microbiome in liver cirrhosis. Nature, 513 (7516), 59–64. doi: 10.1038/nature13568.
  • Qiu, W., et al., 2021. Update on the relationship between depression and neuroendocrine metabolism. Frontiers in neuroscience, 15, 728810. doi: 10.3389/fnins.2021.728810.
  • Radaic, A., and Kapila, Y.L., 2021. The oralome and its dysbiosis: new insights into oral microbiome-host interactions. Computational and structural biotechnology journal, 19, 1335–1360. doi: 10.1016/j.csbj.2021.02.010.
  • Rahman, B., et al., 2023. Dysbiosis of the subgingival microbiome and relation to periodontal disease in association with obesity and overweight. Nutrients, 15 (4), 826. doi: 10.3390/nu15040826.
  • Rezgui, R., et al., 2023. Chemically defined lactobacillus plantarum cell-free metabolites demonstrate cytoprotection in HepG2 cells through Nrf2-dependent mechanism. Antioxidants, 12 (4), 930. doi: 10.3390/antiox12040930.
  • Riccia, D.D., et al., 2007. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral diseases, 13 (4), 376–385. doi: 10.1111/j.1601-0825.2006.01291.x.
  • Rohde, K., Schamarek, I., and Blüher, M., 2020. Consequences of obesity on the sense of taste: taste buds as treatment targets? Diabetes & metabolism journal, 44 (4), 509–528. doi: 10.4093/dmj.2020.0058.
  • Rozas, N.S., Tribble, G.D., and Jeter, C.B., 2021. Oral factors that impact the oral microbiota in Parkinson’s disease. Microorganisms, 9 (8), 1616. doi: 10.3390/microorganisms9081616.
  • Saeb, A.T., et al., 2019. Relative reduction of biological and phylogenetic diversity of the oral microbiota of diabetes and pre-diabetes patients. Microbial pathogenesis, 128, 215–229. doi: 10.1016/j.micpath.2019.01.009.
  • Saha, M.R., and Dey, P., 2021. Pharmacological benefits of Acacia against metabolic diseases: intestinal-level bioactivities and favorable modulation of gut microbiota. Archives of physiology and biochemistry, 8, 1–17. doi: 10.1080/13813455.2021.1966475.
  • Santonocito, S., et al., 2022. A cross-talk between diet and the oral microbiome: balance of nutrition on inflammation and immune system’s response during periodontitis. Nutrients, 14 (12), 2426. doi: 10.3390/nu14122426.
  • Schamarek, I., et al., 2023. The role of the oral microbiome in obesity and metabolic disease: potential systemic implications and effects on taste perception. Nutrition journal, 22 (1), 28. doi: 10.1186/s12937-023-00856-7.
  • Seedorf, H., et al., 2014. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell, 159 (2), 253–266. doi: 10.1016/j.cell.2014.09.008.
  • Segata, N., et al., 2012. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome biology, 13 (6), R42. doi: 10.1186/gb-2012-13-6-r42.
  • Shaalan, A., et al., 2022. Alterations in the oral microbiome associated with diabetes, overweight, and dietary components. Frontiers in nutrition, 9, 914715. doi: 10.3389/fnut.2022.914715.
  • Shi, B., et al., 2020. The subgingival microbiome associated with periodontitis in type 2 diabetes mellitus. The ISME journal, 14 (2), 519–530. doi: 10.1038/s41396-019-0544-3.
  • Shimauchi, H., et al., 2008. Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study. Journal of clinical periodontology, 35 (10), 897–905. doi: 10.1111/j.1600-051X.2008.01306.x.
  • Shoemark, D.K., and Allen, S.J., 2015. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. Journal of Alzheimer’s disease: JAD, 43 (3), 725–738. doi: 10.3233/JAD-141170.
  • Slawik, S., et al., 2011. Probiotics affect the clinical inflammatory parameters of experimental gingivitis in humans. European journal of clinical nutrition, 65 (7), 857–863. doi: 10.1038/ejcn.2011.45.
  • Socransky, S., et al., 1998. Microbial complexes in subgingival plaque. Journal of clinical periodontology, 25 (2), 134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x.
  • Sohn, J., et al., 2022. Porphyromonas gingivalis indirectly elicits intestinal inflammation by altering the gut microbiota and disrupting epithelial barrier function through IL9-producing CD4(+) T cells. Molecular oral microbiology, 37 (2), 42–52. doi: 10.1111/omi.12359.
  • Srivastava, S., et al., 2016. Effect of probiotic curd on salivary pH and Streptococcus mutans: a double blind parallel randomized controlled trial. Journal of clinical and diagnostic research: JCDR, 10 (2), ZC13–ZC16. doi: 10.7860/JCDR/2016/15530.7178.
  • Staab, B., et al., 2009. The influence of a probiotic milk drink on the development of gingivitis: a pilot study. Journal of clinical periodontology, 36 (10), 850–856. doi: 10.1111/j.1600-051X.2009.01459.x.
  • Stefura, T., et al., 2021. Differences in compositions of oral and fecal microbiota between patients with obesity and controls. Medicina, 57 (7), 678. doi: 10.3390/medicina57070678.
  • Stefura, T., et al., 2022. Changes in the composition of oral and intestinal microbiota after sleeve gastrectomy and Roux-En-Y gastric bypass and their impact on outcomes of bariatric surgery. Obesity surgery, 32 (5), 1439–1450. doi: 10.1007/s11695-022-05954-9.
  • Sudhakara, P., et al., 2018. Oral dysbiotic communities and their implications in systemic diseases. Dentistry journal, 6 (2), 10. doi: 10.3390/dj6020010.
  • Sultan, A.S., et al., 2018. The oral microbiome: a lesson in coexistence. PLoS pathogens, 14 (1), e1006719. doi: 10.1371/journal.ppat.1006719.
  • Takeshita, T., et al., 2016. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Scientific reports, 6 (1), 22164. doi: 10.1038/srep22164.
  • Tam, J., et al., 2018. Obesity alters composition and diversity of the oral microbiota in patients with type 2 diabetes mellitus independently of glycemic control. PLoS one, 13 (10), e0204724. doi: 10.1371/journal.pone.0204724.
  • Taylor, G.W., 2001. Bidirectional interrelationships between diabetes and periodontal diseases: an epidemiologic perspective. Annals of periodontology, 6 (1), 99–112. doi: 10.1902/annals.2001.6.1.99.
  • Thomas, C., et al., 2021. Obesity drives an oral microbiota signature of female patients with periodontitis: a pilot study. Diagnostics, 11 (5), 745. doi: 10.3390/diagnostics11050745.
  • Twetman, S., et al., 2009. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta odontologica scandinavica, 67 (1), 19–24. doi: 10.1080/00016350802516170.
  • Ullah, H., et al., 2023. The gut microbiota-brain axis in neurological disorder. Frontiers in neuroscience, 17, 1225875. doi: 10.3389/fnins.2023.1225875.
  • Van Dyke, T.E., Bartold, P.M., and Reynolds, E.C., 2020. The nexus between periodontal inflammation and dysbiosis. Frontiers in immunology, 11, 511. doi: 10.3389/fimmu.2020.00511.
  • Virzì, G.M., et al., 2017. Endotoxin effects on cardiac and renal functions and cardiorenal syndromes. Blood purification, 44 (4), 314–326. doi: 10.1159/000480424.
  • Walker, M.Y., et al., 2018. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric oxide: biology and chemistry, 73, 81–88. doi: 10.1016/j.niox.2017.06.003.
  • Wang, H., et al., 2022a. The spouses of stroke patients have a similar oral microbiome to their partners with an elevated risk of stroke. Microorganisms, 10 (11), 2288. doi: 10.3390/microorganisms10112288.
  • Wang, M., et al., 2023. Periodontitis salivary microbiota exacerbates nonalcoholic fatty liver disease in high-fat diet-induced obese mice. iScience, 26 (4), 106346. doi: 10.1016/j.isci.2023.106346.
  • Wang, T., et al., 2022b. Oral and gut microbial dysbiosis and non-alcoholic fatty liver disease: the central role of Porphyromonas gingivalis. Frontiers in medicine, 9, 822190. doi: 10.3389/fmed.2022.822190.
  • Wattanarat, O., et al., 2015. Enhancement of salivary human neutrophil peptide 1–3 levels by probiotic supplementation. BMC oral health, 15 (1), 19. doi: 10.1186/s12903-015-0003-0.
  • Wingfield, B., et al., 2021. Variations in the oral microbiome are associated with depression in young adults. Scientific reports, 11 (1), 15009. doi: 10.1038/s41598-021-94498-6.
  • Xiao, H., et al., 2021. Oral microbiota transplantation fights against head and neck radiotherapy-induced oral mucositis in mice. Computational and structural biotechnology journal, 19, 5898–5910. doi: 10.1016/j.csbj.2021.10.028.
  • Xie, M., et al., 2020. BMAL1-downregulation aggravates Porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress. Circulation research, 126 (6), e15–e29. doi: 10.1161/CIRCRESAHA.119.315502.
  • Xu, Y., et al., 2020. Differential intestinal and oral microbiota features associated with gestational diabetes and maternal inflammation. American journal of physiology. endocrinology and metabolism, 319 (2), E247–E253. doi: 10.1152/ajpendo.00266.2019.
  • Yamazaki, K., et al., 2021. Oral pathobiont-induced changes in gut microbiota aggravate the pathology of nonalcoholic fatty liver disease in mice. Frontiers in immunology, 12, 766170. doi: 10.3389/fimmu.2021.766170.
  • Yang, J., et al., 2023. Gut microbiota modulate distal symmetric polyneuropathy in patients with diabetes. Cell metabolism, 35 (9), 1548–1562.e7. doi: 10.1016/j.cmet.2023.06.010.
  • Yang, Y., et al., 2019. Oral microbiome and obesity in a large study of low-income and African-American populations. Journal of oral microbiology, 11 (1), 1650597. doi: 10.1080/20002297.2019.1650597.
  • Yeh, Y.T., et al., 2018. Periodontitis and dental scaling associated with pyogenic liver abscess: a population-based case-control study. Journal of periodontal research, 53 (5), 785–792. doi: 10.1111/jre.12567.
  • Yoneda, M., et al., 2011. Liver abscess caused by periodontal bacterial infection with Fusobacterium necrophorum. Hepatology research , 41 (2), 194–196. doi: 10.1111/j.1872-034X.2010.00748.x.
  • Yoneda, M., et al., 2012. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC gastroenterology, 12 (1), 16. doi: 10.1186/1471-230X-12-16.
  • Yu, J.C., Khodadadi, H., and Baban, B., 2019. Innate immunity and oral microbiome: a personalized, predictive, and preventive approach to the management of oral diseases. The EPMA journal, 10 (1), 43–50. doi: 10.1007/s13167-019-00163-4.
  • Zaura, E., et al., 2014. Acquiring and maintaining a normal oral microbiome: current perspective. Frontiers in cellular and infection microbiology, 4, 85. doi: 10.3389/fcimb.2014.00085.
  • Zaura, E., and Ten Cate, J.M., 2015. Towards understanding oral health. Caries research, 49 (Suppl. 1), 55–61. doi: 10.1159/000377733.
  • Zeigler, C.C., et al., 2012. Microbiota in the oral subgingival biofilm is associated with obesity in adolescence. Obesity, 20 (1), 157–164. doi: 10.1038/oby.2011.305.
  • Zhao, H., et al., 2017. Variations in oral microbiota associated with oral cancer. Scientific reports, 7 (1), 11773. doi: 10.1038/s41598-017-11779-9.
  • Zhao, Y.Q., et al., 2021. Sex variations in the oral microbiomes of youths with severe periodontitis. Journal of immunology research, 2021, 8124593. doi: 10.1155/2021/8124593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.