2,669
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hepatoprotective effect of protocatechuic acid against type 2 diabetes-induced liver injury

, , , &
Pages 737-745 | Received 26 Apr 2022, Accepted 12 Feb 2023, Published online: 02 May 2023

References

  • Abdelrahman RS, El-Tanbouly GS. 2022. Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the Il-6/Il-17/Il-23 immunoinflammatory pathway. Toxicol Appl Pharmacol. 440:115931.
  • Abo El-Nasr NME, Saleh DO, Mahmoud SS, Nofal SM, Abdelsalam RM, Safar MM, El-Abhar HS. 2020. Olmesartan attenuates type 2 diabetes-associated liver injury: Cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and RAS signaling pathways. Eur J Pharmacol. 874:173010.
  • Almatroodi SA, Anwar S, Almatroudi A, Khan AA, Alrumaihi F, Alsahli MA, Rahmani AH. 2020. Hepatoprotective effects of garlic extract against carbon tetrachloride (CCI4)-induced liver injury via modulation of antioxidant, anti-inflammatory activities and hepatocyte architecture. Appl Sci. 10(18):6200.
  • Alsahli MA, Almatroodi SA, Almatroudi A, Almutary AG, Alrumaihi F, Anwar S, Khan AA, Rahmani AH. 2021. 6-Gingerol, a major ingredient of ginger attenuates diethylnitrosamine-induced liver injury in rats through the modulation of oxidative stress and anti-inflammatory activity. Mediators Inflamm. 2021:1–17.
  • Alsharif KF, Almalki AA, Alsanie WF, Alzahrani KJ, Kabrah SM, Elshopakey GE, Alghamdi AAA, Lokman MS, Sberi HA, Bauomy AA, et al. 2021. Protocatechuic acid attenuates lipopolysaccharide-induced septic lung injury in mice: the possible role through suppressing oxidative stress, inflammation and apoptosis. J Food Biochem. 45(10):e13915.
  • Anwar S, Khan S, Almatroudi A, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH. 2021. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol Biol Rep. 48(1):787–805.
  • Bai L, Kee HJ, Han X, Zhao T, Kee SJ, Jeong MH. 2021. Protocatechuic acid attenuates isoproterenol-induced cardiac hypertrophy via downregulation of ROCK1-SP1-PKCγ axis. Sci Rep. 11(1):17343.
  • Banday MZ, Sameer AS, Nissar S. 2020. Pathophysiology of diabetes: an overview. Avicenna J Med. 10(4):174–188.
  • Bashar SM, Elhadidy MG, Mostafa AF, Hamed B, Helmy S, Abd-Elmoniem HA. 2021. Hepatoprotective effect of gallic acid against type 2-induced diabetic liver injury in male rats through modulation of fetuin-A and GLP-1 with involvement of ERK1/2/NF-κB and Wnt1/β-catenin signaling pathways. Gen Physiol Biophys. 40(3):221–234.
  • Bhardwaj R, Singh BP, Sandhu N, Singh N, Kaur R, Rokana N, Singh KS, Chaudhary V, Panwar H. 2020. Probiotic mediated NF-κB regulation for prospective management of type 2 diabetes. Mol Biol Rep. 47(3):2301–2313.
  • Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP. 2005. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med. 83(11):876–886.
  • Cai ZL, Shen B, Yuan Y, Liu C, Xie QW, Hu TT, Yao Q, Wu QQ, Tang QZ. 2020. The effect of HMGA1 in LPS-induced myocardial inflammation. Int J Biol Sci. 16(11):1798–1810.
  • Chao CY, Yin MC. 2009. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog Dis. 6(2):201–206.
  • Cui B, Yang Z, Wang S, Guo M, Li Q, Zhang Q, Bi X. 2021. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Pharmazie. 76:232–238.
  • Du X, Wu Z, Xu Y, Liu Y, Liu W, Wang T, Li C, Zhang C, Yi F, Gao L, et al. 2019. Increased TIM-3 expression alleviates liver injury by regulating macrophage activation in mcd-induced Nash mice. Cell Mol Immunol. 16(11):878–886.
  • Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. 2013. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 12(1):60.
  • Elias-Oliveira J, Leite JA, Pereira IS, Guimaraes JB, Manso G, Silva JS, Tostes RC, Carlos D. 2020. NLR and intestinal dysbiosis-associated inflammatory illness: drivers or dampers? Front Immunol. 11:1810.
  • El-Sonbaty YA, Suddek GM, Megahed N, Gameil NM. 2019. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie. 167:119–134.
  • Esmaeilzadeh M, Heidarian E, Shaghaghi M, Roshanmehr H, Najafi M, Moradi A, Nouri A. 2020. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. Pharm Biol. 58(1):590–596.
  • Fu R, Zhou J, Wang R, Sun R, Feng D, Wang Z, Zhao Y, Lv L, Tian X, Yao J. 2019. Protocatechuic acid-mediated miR-219a-5p activation inhibits the p66shc oxidant pathway to alleviate alcoholic liver injury. Oxid Med Cell Longev. 2019:1–15.
  • Hasan HF, Abdel-Rafei MK, Galal SM. 2017. Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-γ expression and hampering mir-17-5p-activated canonical Wnt-β-catenin signaling. Biochem Cell Biol. 95(3):400–414.
  • Huang BW, Chiang MT, Yao HT, Chiang W. 2004. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab. 6(2):120–126.
  • Huang P, Yan R, Zhang X, Wang L, Ke X, Qu Y. 2019. Activating Wnt/β-catenin signaling pathway for disease therapy: challenges and opportunities. Pharmacol Ther. 196:79–90.
  • Kang Z, Zhu H, Jiang W, Zhang S. 2013. Protocatechuic acid induces angiogenesis through PI3K-AKT-eNOS-VEGF signalling pathway. Basic Clin Pharmacol Toxicol. 113(4):221–227.
  • Kassab RB, Theyab A, Al-Ghamdy AO, Algahtani M, Mufti AH, Alsharif KF, Abdella EM, Habotta OA, Omran MM, Lokman MS, et al. 2022. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environ Sci Pollut Res Int. 29(8):12208–12221.
  • Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. 2019. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina. 55:546.
  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 41(6):1313–1321.
  • Lende AB, Kshirsagar AD, Deshpande AD, Muley MM, Patil RR, Bafna PA, Naik SR. 2011. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacol. 19(5):255–263.
  • Lin J, Tang Y, Kang Q, Feng Y, Chen A. 2012. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol. 166(8):2212–2227.
  • Liu T, Zheng W, Wang L, Wang L, Zhang Y. 2020. TLR4/NF-κB signaling pathway participates in the protective effects of apocynin on gestational diabetes mellitus induced placental oxidative stress and inflammation. Reprod Sci. 27(2):722–730.
  • Loria P, Lonardo A, Anania F. 2013. Liver and diabetes. A vicious circle. Hepatol Res. 43(1):51–64.
  • Ma RCW. 2018. Epidemiology of diabetes and diabetic complications in China. Diabetologia. 61(6):1249–1260.
  • Ma Y, Chen F, Yang S, Chen B, Shi J. 2018. Protocatechuic acid ameliorates high glucose-induced extracellular matrix accumulation in diabetic nephropathy. Biomed Pharmacother. 98:18–22.
  • Maude H, Sanchez-Cabanillas C, Cebola I. 2021. Epigenetics of hepatic insulin resistance. Front Endocrinol. 12:681356.
  • Meyerovich K, Ortis F, Cardozo AK. 2018. The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. J Mol Endocrinol. 61(2):F1–F6.
  • Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. 2016. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 16(2):e132–e141.
  • Mota M, Banini BA, Cazanave SC, Sanyal AJ. 2016. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 65(8):1049–1061.
  • Papachristoforou E, Lambadiari V, Makrilakis K, Maratou E. 2020. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020:7489795.
  • Pearson ER. 2019. Type 2 diabetes: a multifaceted disease. Diabetologia. 62(7):1107–1112.
  • Petersen MC, Shulman GI. 2018. Mechanisms of insulin action and insulin resistance. Physiol Rev. 98(4):2133–2223.
  • Shi GF, An LJ, Jiang B, Guan S, Bao YM. 2006. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neurosci Lett. 403(3):206–210.
  • Shi Q, Cheng Y, Dong X, Zhang M, Pei C, Zhang M. 2020. Effects of rhaponticin on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1/NF-κB signalling. J Biochem Mol Toxicol. 34(11):e22568.
  • Wang Q, Ren X, Wu J, Li H, Yang L, Zhang Y, Wang X, Li Z. 2022. Protocatechuic acid protects mice from influenza a virus infection. Eur J Clin Microbiol Infect Dis. 41(4):589–596.
  • Wu YX, Wu TY, Xu BB, Xu XY, Chen HG, Li XY, Wang G. 2016. Protocatechuic acid inhibits osteoclast differentiation and stimulates apoptosis in mature osteoclasts. Biomed Pharmacother. 82:399–405.
  • Younus H, Anwar S. 2016. Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. Int J Health Sci. 10:261–277.
  • Yu L, Liu Y, Jin Y, Liu T, Lu X, Wang W, Zhang C. 2021. Zinc supplementation prevented type 2 diabetes-induced liver injury mediated by the Nrf2-MT antioxidative pathway. J Diabetes Res. 2021:1–14.
  • Zheng Y, Wang J, Wang J, Xie H, Zhao T. 2020. Effect of curcumol on the fenestrae of liver sinusoidal endothelial cells based on NF-κb signaling pathway. Evid Based Complement Alternat Med. 2020:8590638.
  • Zhou Z, Zhang Y, Ding XR, Chen SH, Yang J, Wang XJ, Jia GL, Chen HS, Bo XC, Wang SQ. 2007. Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antiviral Res. 74(1):59–64.