1,916
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Recent advances towards natural plants as potential inhibitors of SARS-Cov-2 targets

, , , , , & show all
Pages 1186-1210 | Received 10 Jan 2023, Accepted 23 Jul 2023, Published online: 22 Aug 2023

References

  • Aarthy M, Muthuramalingam P, Ramesh M, Singh SK. 2022. Unraveling the multi-targeted curative potential of bioactive molecules against cervical cancer through integrated omics and systems pharmacology approach. Sci Rep. 12(1):14245. doi: 10.1038/s41598-022-18358-7.
  • Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, Rizzuti B, Velazquez-Campoy A. 2020. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol. 164:1693–1703. doi: 10.1016/j.ijbiomac.2020.07.235.
  • Ader F, Bouscambert-Duchamp M, Hites M, Peiffer-Smadja N, Poissy J, Belhadi D, Diallo A, Lê MP, Peytavin G, Staub T, et al. 2022. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect Dis. 22(2):209–221. doi: 10.1016/S1473-3099(21)00485-0.
  • Alagu Lakshmi S, Shafreen RMB, Priya A, Shunmugiah KP. 2021. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J Biomol Struct Dyn. 39(13):4594–4609. doi: 10.1080/07391102.2020.1778537.
  • Allam L, Ghrifi F, Mohammed H, El Hafidi N, El Jaoudi R, El Harti J, Lmimouni B, Belyamani L, Ibrahimi A. 2020. Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform Biol Insights. 14:1177932220965505. doi: 10.1177/1177932220965505.
  • An HJ, Lee JY, Park W. 2022. Baicalin modulates inflammatory response of macrophages activated by LPS via calcium-CHOP pathway. Cells. 11:3076. doi: 10.3390/cells11193076.
  • Appelberg S, Gupta S, Svensson Akusjärvi S, Ambikan AT, Mikaeloff F, Saccon E, Végvári Á, Benfeitas R, Sperk M, Ståhlberg M, et al. 2020. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect. 9(1):1748–1760. doi: 10.1080/22221751.2020.1799723.
  • Bao Y, Gao Y, Cui X. 2016. Effect of Shufeng Jiedu capsules as a broad-spectrum antibacterial. Biosci Trends. 10(1):74–78. doi: 10.5582/bst.2015.01172.
  • Basu A, Sarkar A, Maulik U. 2020. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep. 10(1):17699. doi: 10.1038/s41598-020-74715-4.
  • Bharadwaj S, Dubey A, Yadava U, Mishra SK, Kang SG, Dwivedi VD. 2021. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Brief Bioinform. 22(2):1361–1377. doi: 10.1093/bib/bbaa382.
  • Bilginer S, Gözcü S, Güvenalp Z. 2022. Molecular docking study of several seconder metabolites from medicinal plants as potential inhibitors of COVID-19 main protease. Turk J Pharm Sci. 19(4):431–441. doi: 10.4274/tjps.galenos.2021.83548.
  • Bosch-Barrera J, Martin-Castillo B, Buxó M, Brunet J, Encinar JA, Menendez JA. 2020. Silibinin and SARS-CoV-2: dual targeting of host cytokine storm and virus replication machinery for clinical management of COVID-19 patients. J Clin Med. 9:1770. doi: 10.3390/jcm9061770.
  • Burki T. 2022. The future of paxlovid for COVID-19. Lancet Respir Med. 10(7):e68. doi: 10.1016/S2213-2600(22)00192-8.
  • Cao Z, Chen L, Liu Y, Peng T. 2018. Oxysophoridine rescues spinal cord injury via anti‑inflammatory, anti‑oxidative stress and anti‑apoptosis effects. Mol Med Rep. 17:2523–2528.
  • Chen H, Du Q. 2020. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints.org. [accessed 2023 Apr 24]. doi: 10.20944/preprints202001.0358.v3.
  • Chen Q, Liu J, Wang W, Liu S, Yang X, Chen M, Cheng L, Lu J, Guo T, Huang F. 2019. Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway. Biomed Pharmacother. 115:108971. doi: 10.1016/j.biopha.2019.108971.
  • Chen R, Huang Y, Quan J, Liu J, Wang H, Billiar TR, Lotze MT, Zeh HJ, Kang R, Tang D. 2020. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon. 6(12):e05672. doi: 10.1016/j.heliyon.2020.e05672.
  • Chen Y, Zhang J, Zhang M, Song Y, Zhang Y, Fan S, Ren S, Fu L, Zhang N, Hui H, et al. 2021. Baicalein resensitizes tamoxifen-resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia-inducible factor-1α. Clin Transl Med. 11:e577.
  • da Silva FMA, da Silva KPA, de Oliveira LPM, Costa EV, Koolen HH, Pinheiro MLB, de Souza AQL, de Souza ADL. 2020. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem Inst Oswaldo Cruz. 115:e200207. doi: 10.1590/0074-02760200207.
  • Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. 2019. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 59(sup1):S17–s29. doi: 10.1080/10408398.2018.1501657.
  • Darwish RS, El-Banna AA, Ghareeb DA, El-Hosseny MF, Seadawy MG, Dawood HM. 2022. Chemical profiling and unraveling of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis, in vitro study and molecular docking. J Ethnopharmacol. 291:115038. doi: 10.1016/j.jep.2022.115038.
  • Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). 2020. Chin Med J. 133:1087–1095.
  • Diamond MS, Kanneganti TD. 2022. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 23(2):165–176. doi: 10.1038/s41590-021-01091-0.
  • Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, Cheng PL, Yutao W, Zheng J, Yang Z, et al. 2017. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med. 17(1):130. doi: 10.1186/s12906-017-1585-7.
  • Egieyeh S, Syce J, Malan SF, Christoffels A. 2018. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach. PLoS One. 13(9):e0204644. doi: 10.1371/journal.pone.0204644.
  • Enmozhi SK, Raja K, Sebastine I, Joseph J. 2021. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn. 39(9):3092–3098. doi: 10.1080/07391102.2020.1760136.
  • Erukainure OL, Matsabisa MG, Muhammad A, Abarshi MM, Amaku JF, Katsayal SB, Nde AL. 2021. Targeting of protein’s messenger RNA for viral replication, assembly and release in SARS-CoV-2 using whole genomic data from South Africa: therapeutic potentials of Cannabis sativa L. Front Pharmacol. 12:736511. doi: 10.3389/fphar.2021.736511.
  • Fakhar Z, Faramarzi B, Pacifico S, Faramarzi S. 2021. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: an in-silico perspective of therapeutic targets against COVID-19 pandemic. J Biomol Struct Dyn. 39(16):6171–6183. doi: 10.1080/07391102.2020.1801510.
  • Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. 2022. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J Biomol Struct Dyn. 40(6):2647–2662. doi: 10.1080/07391102.2020.1841680.
  • Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, Oguchi G, Ryan P, Nielsen BU, Brown M, et al. 2022. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med. 386(4):305–315. doi: 10.1056/NEJMoa2116846.
  • Gowda P, Patrick S, Joshi SD, Kumawat RK, Sen E. 2021. Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine. 142:155496. doi: 10.1016/j.cyto.2021.155496.
  • Hager KJ, Pérez Marc G, Gobeil P, Diaz RS, Heizer G, Llapur C, Makarkov AI, Vasconcellos E, Pillet S, Riera F, et al. 2022. Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N Engl J Med. 386(22):2084–2096. doi: 10.1056/NEJMoa2201300.
  • Hallowell BD, Carlson CM, Jacobs JR, Pomeroy M, Steinberg J, Tenforde MW, McDonald E, Foster L, Feldstein LR, Rolfes MA, et al. 2020. Severe acute respiratory syndrome coronavirus 2 prevalence, seroprevalence, and exposure among evacuees from Wuhan, China, 2020. Emerg Infect Dis. 26(9):1998–2004. doi: 10.3201/eid2609.201590.
  • Han J, Zhao Y, Zhang Y, Li C, Yi Y, Pan C, Tian J, Yang Y, Cui H, Wang L, et al. 2018. RhoA/ROCK signaling pathway mediates Shuanghuanglian injection-induced pseudo-allergic reactions. Front Pharmacol. 9:87. doi: 10.3389/fphar.2018.00087.
  • Harrison AG, Lin T, Wang P. 2020. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 41(12):1100–1115. doi: 10.1016/j.it.2020.10.004.
  • Henss L, Auste A, Schürmann C, Schmidt C, von Rhein C, Mühlebach MD, Schnierle BS. 2021. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J Gen Virol. 102:001574. doi: 10.1099/jgv.0.001574.
  • Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Hirokawa T, Nakajima S, Watashi K, Shirai T. 2022. Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. FEBS Open Bio. 12(1):285–294. doi: 10.1002/2211-5463.13337.
  • Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, Gassen NC, Müller MA, Drosten C, Pöhlmann S. 2020. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 585(7826):588–590. doi: 10.1038/s41586-020-2575-3.
  • Hou W, Hu S, Su Z, Wang Q, Meng G, Guo T, Zhang J, Gao P. 2018. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med Chem. 10(19):2253–2264. doi: 10.4155/fmc-2018-0172.
  • Hu D, Chen X, Li D, Zhang H, Duan Y, Huang Y. 2022a. Sustained release of co-amorphous matrine-type alkaloids and resveratrol with anti-COVID-19 potential. Pharmaceutics. 14:603. doi: 10.3390/pharmaceutics14030603.
  • Hu H, Hu Z, Zhang Y, Wan H, Yin Z, Li L, Liang X, Zhao X, Yin L, Ye G, et al. 2022b. Myricetin inhibits pseudorabies virus infection through direct inactivation and activating host antiviral defense. Front Microbiol. 13:985108. doi: 10.3389/fmicb.2022.985108.
  • Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. 2021. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 225:107843. doi: 10.1016/j.pharmthera.2021.107843.
  • Islam R, Parves MR, Paul AS, Uddin N, Rahman MS, Mamun AA, Hossain MN, Ali MA, Halim MA. 2021. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn. 39(9):3213–3224. doi: 10.1080/07391102.2020.1761883.
  • Jain AS, Sushma P, Dharmashekar C, Beelagi MS, Prasad SK, Shivamallu C, Prasad A, Syed A, Marraiki N, Prasad KS. 2021. In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J Biol Sci. 28(1):1040–1051. doi: 10.1016/j.sjbs.2020.11.049.
  • Jang M, Park R, Park YI, Cha YE, Yamamoto A, Lee JI, Park J. 2021. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochem Biophys Res Commun. 547:23–28. doi: 10.1016/j.bbrc.2021.02.016.
  • Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, Park J. 2020. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med. 2020:5630838. doi: 10.1155/2020/5630838.
  • Jimenez-Aleman GH, Castro V, Londaitsbehere A, Gutierrez-Rodríguez M, Garaigorta U, Solano R, Gastaminza P. 2021. SARS-CoV-2 fears green: the chlorophyll catabolite pheophorbide a is a potent antiviral. Pharmaceuticals. 14:1048. doi: 10.3390/ph14101048.
  • Jin SJ, Yang Y, Ma L, Ma BH, Ren LP, Guo LC, Wang WB, Zhang YX, Zhao ZJ, Cui M. 2017. In vivo and in vitro induction of the apoptotic effects of oxysophoridine on colorectal cancer cells via the Bcl-2/Bax/caspase-3 signaling pathway. Oncol Lett. 14(6):8000–8006. doi: 10.3892/ol.2017.7227.
  • Jin YH, Min JS, Jeon S, Lee J, Kim S, Park T, Park D, Jang MS, Park CM, Song JH, et al. 2021. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine. 86:153440. doi: 10.1016/j.phymed.2020.153440.
  • Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, et al. 2020. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 582(7811):289–293. doi: 10.1038/s41586-020-2223-y.
  • Jo S, Kim S, Shin DH, Kim MS. 2020. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 35(1):145–151. doi: 10.1080/14756366.2019.1690480.
  • Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. 2020. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints.org. [accessed 2023 Apr 24]. doi: 10.20944/preprints202003.0226.v1.
  • Kirtipal N, Bharadwaj S, Kang SG. 2020. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol. 85:104502. doi: 10.1016/j.meegid.2020.104502.
  • Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP, Lu BG, Kuchel NW, Grohmann C, Shibata Y, et al. 2020. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. Embo J. 39(18):e106275.
  • Lau TF, Leung PC, Wong EL, Fong C, Cheng KF, Zhang SC, Lam CW, Wong V, Choy KM, Ko WM. 2005. Using herbal medicine as a means of prevention experience during the SARS crisis. Am J Chin Med. 33(3):345–356. doi: 10.1142/S0192415X05002965.
  • Leung EL, Pan HD, Huang YF, Fan XX, Wang WY, He F, Cai J, Zhou H, Liu L. 2020. The scientific foundation of Chinese herbal medicine against COVID-19. Engineering. 6(10):1099–1107. doi: 10.1016/j.eng.2020.08.009.
  • Li Y, Wu Y, Li S, Li Y, Zhang X, Shou Z, Gu S, Zhou C, Xu D, Zhao K, et al. 2022. Identification of phytochemicals in Qingfei Paidu decoction for the treatment of coronavirus disease 2019 by targeting the virus-host interactome. Biomed Pharmacother. 156:113946. doi: 10.1016/j.biopha.2022.113946.
  • Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu T, Ji XY, Zheng XX, Zhang J, Wang JX. 2021. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin. 42(5):701–714. doi: 10.1038/s41401-020-0496-1.
  • Liu J, Sun T, Liu S, Liu J, Fang S, Tan S, Zeng Y, Zhang B, Li W. 2022a. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med. 151(Pt A):106298. doi: 10.1016/j.compbiomed.2022.106298.
  • Liu W, Zheng W, Cheng L, Li M, Huang J, Bao S, Xu Q, Ma Z. 2022b. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Nat Prod Bioprospect. 12(1):4. doi: 10.1007/s13659-022-00325-4.
  • Ludwiczuk A, Asakawa Y. 2019. Bryophytes as a source of bioactive volatile terpenoids - A review. Food Chem Toxicol. 132:110649. doi: 10.1016/j.fct.2019.110649.
  • Luo Z, Chen W, Xiang M, Wang H, Xiao W, Xu C, Li Y, Min J, Tu Q. 2021. The preventive effect of Xuebijing injection against cytokine storm for severe patients with COVID-19: a prospective randomized controlled trial. Eur J Integr Med. 42:101305. doi: 10.1016/j.eujim.2021.101305.
  • Ma Q, Lei B, Chen R, Liu B, Lu W, Jiang H, Chen Z, Guo X, Wang Y, Zhang L, et al. 2022. Liushen Capsules, a promising clinical candidate for COVID-19, alleviates SARS-CoV-2-induced pulmonary in vivo and inhibits the proliferation of the variant virus strains in vitro. Chin Med. 17(1):40. doi: 10.1186/s13020-022-00598-4.
  • Ma Q, Li R, Pan W, Huang W, Liu B, Xie Y, Wang Z, Li C, Jiang H, Huang J, et al. 2020a. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway. Phytomedicine. 78:153296. doi: 10.1016/j.phymed.2020.153296.
  • Ma Q, Pan W, Li R, Liu B, Li C, Xie Y, Wang Z, Zhao J, Jiang H, Huang J, et al. 2020b. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacol Res. 158:104850. doi: 10.1016/j.phrs.2020.104850.
  • Ma Q, Qiu M, Zhou H, Chen J, Yang X, Deng Z, Chen L, Zhou J, Liao Y, Chen Q, et al. 2020c. The study on the treatment of Xuebijing injection (XBJ) in adults with severe or critical corona virus disease 2019 and the inhibitory effect of XBJ against SARS-CoV-2. Pharmacol Res. 160:105073. doi: 10.1016/j.phrs.2020.105073.
  • Maiti S, Banerjee A. 2021. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: bioinformatics and molecular docking study. Drug Dev Res. 82(1):86–96. doi: 10.1002/ddr.21730.
  • Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK. 2020. Structure-based drug designing for potential antiviral activity of selected natural products from ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease. 31(2):179–193. doi: 10.1007/s13337-020-00598-8.
  • Mhatre S, Naik S, Patravale V. 2021. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput Biol Med. 129:104137. doi: 10.1016/j.compbiomed.2020.104137.
  • Narkhede RR, Pise AV, Cheke RS, Shinde SD. 2020. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences. Nat Prod Bioprospect. 10(5):297–306. doi: 10.1007/s13659-020-00253-1.
  • Newman DJ, Cragg GM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 83(3):770–803. doi: 10.1021/acs.jnatprod.9b01285.
  • Ngwa W, Kumar R, Thompson D, Lyerly W, Moore R, Reid TE, Lowe H, Toyang N. 2020. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules. 25:2707. doi: 10.3390/molecules25112707.
  • [NHC] National Health Commission. 2020. Diagnosis and treatment protocol for COVID-19 (Trial Version 7). Beijing: National Health Commission of the People’s Republic of China; [accessed 2023 Apr 20]. http://en.nhc.gov.cn/2020-03/29/c_78469.htm.
  • Nie J, Yang HM, Sun CY, Liu YL, Zhuo JY, Zhang ZB, Lai XP, Su ZR, Li YC. 2018. Scutellarin enhances antitumor effects and attenuates the toxicity of bleomycin in H22 ascites tumor-bearing mice. Front Pharmacol. 9:615. doi: 10.3389/fphar.2018.00615.
  • Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, Alejandria MM, Hernández García C, Kieny MP, Malekzadeh R, et al. 2021. Repurposed antiviral drugs for Covid-19 – interim WHO solidarity trial results. N Engl J Med. 384(6):497–511.
  • Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. 2021. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn. 39(16):6306–6316. doi: 10.1080/07391102.2020.1796811.
  • Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, Kwon HJ, Park SJ, Lee WS, Ryu YB. 2012. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem. 20(19):5928–5935. doi: 10.1016/j.bmc.2012.07.038.
  • Park R, Jang M, Park YI, Park Y, Jung W, Park J, Park J. 2021. Epigallocatechin gallate (EGCG), a green tea polyphenol, reduces coronavirus replication in a mouse model. Viruses. 13:2533. doi: 10.3390/v13122533.
  • Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, Schwartz C, Rohr O, Morot-Bizot S, Herbein G. 2021. Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses. 13:354. doi: 10.3390/v13020354.
  • Paul AS, Islam R, Parves MR, Mamun AA, Shahriar I, Hossain MI, Hossain MN, Ali MA, Halim MA. 2022. Cysteine focused covalent inhibitors against the main protease of SARS-CoV-2. J Biomol Struct Dyn. 40(4):1639–1658. doi: 10.1080/07391102.2020.1831610.
  • Peng W, Xu Y, Han D, Feng F, Wang Z, Gu C, Zhou X, Wu Q. 2023. Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis. Arch Physiol Biochem. 129(1):253–260. doi: 10.1080/13813455.2020.1817944.
  • Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H. 2020. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. Embo J. 39(20):e105938.
  • Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. 2020. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: in silico molecular docking studies and in vitro enzymatic activity assay. Front Chem. 8:623971. doi: 10.3389/fchem.2020.623971.
  • Pizzorno A, Padey B, Dubois J, Julien T, Traversier A, Dulière V, Brun P, Lina B, Rosa-Calatrava M, Terrier O. 2020. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res. 181:104878. doi: 10.1016/j.antiviral.2020.104878.
  • Pooja M, Reddy GJ, Hema K, Dodoala S, Koganti B. 2021. Unravelling high-affinity binding compounds towards transmembrane protease serine 2 enzyme in treating SARS-CoV-2 infection using molecular modelling and docking studies. Eur J Pharmacol. 890:173688. doi: 10.1016/j.ejphar.2020.173688.
  • Qin S, Huang X, Qu S. 2022. Baicalin induces a potent innate immune response to inhibit respiratory syncytial virus replication via regulating viral non-structural 1 and matrix RNA. Front Immunol. 13:907047. doi: 10.3389/fimmu.2022.907047.
  • Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH, Ge XY. 2020. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 22(4-5):221–225. doi: 10.1016/j.micinf.2020.03.003.
  • Quintana VM, Selisko B, Brunetti JE, Eydoux C, Guillemot JC, Canard B, Damonte EB, Julander JG, Castilla V. 2020. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Res. 176:104749. doi: 10.1016/j.antiviral.2020.104749.
  • Rahman F, Tabrez S, Ali R, Alqahtani AS, Ahmed MZ, Rub A. 2021. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. J Tradit Complement Med. 11(2):173–179. doi: 10.1016/j.jtcme.2021.01.006.
  • Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, et al. 2022. Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother. 150:113041. doi: 10.1016/j.biopha.2022.113041.
  • Ramdani LH, Bachari K. 2020. Potential therapeutic effects of resveratrol against SARS-CoV-2. Acta Virol. 64(3):276–280. doi: 10.4149/av_2020_309.
  • Romeo A, Iacovelli F, Falconi M. 2020. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Res. 286:198068. doi: 10.1016/j.virusres.2020.198068.
  • Sa-Ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, et al. 2021. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod. 84(4):1261–1270. doi: 10.1021/acs.jnatprod.0c01324.
  • Sawai T, Itoh Y, Ozaki H, Isoda N, Okamoto K, Kashima Y, Kawaoka Y, Takeuchi Y, Kida H, Ogasawara K. 2008. Induction of cytotoxic T-lymphocyte and antibody responses against highly pathogenic avian influenza virus infection in mice by inoculation of apathogenic H5N1 influenza virus particles inactivated with formalin. Immunology. 124(2):155–165. doi: 10.1111/j.1365-2567.2007.02745.x.
  • Sberna G, Biagi M, Marafini G, Nardacci R, Biava M, Colavita F, Piselli P, Miraldi E, D'Offizi G, Capobianchi MR, et al. 2022. In vitro evaluation of antiviral efficacy of a standardized hydroalcoholic extract of poplar type propolis against SARS-CoV-2. Front Microbiol. 13:799546. doi: 10.3389/fmicb.2022.799546.
  • Service RF. 2022. Bad news for paxlovid? Resistance may be coming. Science. 377(6602):138–139. doi: 10.1126/science.add8037.
  • Shah MR, Fatima S, Khan SN, Ullah S, Himani G, Wan K, Lin T, Lau JYN, Liu Q, Lam DSC. 2022. Jinhua Qinggan granules for non-hospitalized COVID-19 patients: a double-blind, placebo-controlled, and randomized controlled trial. Front Med. 9:928468. doi: 10.3389/fmed.2022.928468.
  • Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, et al. 2022. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature. 605(7909):340–348. doi: 10.1038/s41586-022-04661-w.
  • Sharma J, Kumar Bhardwaj V, Singh R, Rajendran V, Purohit R, Kumar S. 2021. An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non-structural protein-15 of SARS-CoV-2. Food Chem. 346:128933. doi: 10.1016/j.foodchem.2020.128933.
  • Shi N, Liu B, Liang N, Ma Y, Ge Y, Yi H, Wo H, Gu H, Kuang Y, Tang S, et al. 2020. Association between early treatment with Qingfei Paidu decoction and favorable clinical outcomes in patients with COVID-19: a retrospective multicenter cohort study. Pharmacol Res. 161:105290. doi: 10.1016/j.phrs.2020.105290.
  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. 2010. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 28:367–388. doi: 10.1146/annurev.immunol.021908.132603.
  • Song J, Zhang L, Xu Y, Yang D, Zhang L, Yang S, Zhang W, Wang J, Tian S, Yang S, et al. 2021. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol. 183:114302. doi: 10.1016/j.bcp.2020.114302.
  • Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xie H, Ke CQ, Hu HC, Gao MN, et al. 2020. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 41(9):1167–1177. doi: 10.1038/s41401-020-0483-6.
  • Sun N, Zhang H, Sun P, Khan A, Guo J, Zheng X, Sun Y, Fan K, Yin W, Li H. 2020. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model. Phytomedicine. 77:153289. doi: 10.1016/j.phymed.2020.153289.
  • Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. 2022. In-silico computational investigations of antiviral lignan derivatives as potent inhibitors of SARS CoV-2. ChemistrySelect. 7(28):e202202069. doi: 10.1002/slct.202202069.
  • Tahmasebi S, El-Esawi MA, Mahmoud ZH, Timoshin A, Valizadeh H, Roshangar L, Varshoch M, Vaez A, Aslani S, Navashenaq JG, et al. 2021. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J Cell Physiol. 236(7):5325–5338. doi: 10.1002/jcp.30233.
  • Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 17(6):613–620. doi: 10.1038/s41423-020-0400-4.
  • Ti H. 2020. Phytochemical profiles and their anti-inflammatory responses against influenza from traditional Chinese medicine or herbs. Mini Rev Med Chem. 20(20):2153–2164. doi: 10.2174/1389557520666200807134921.
  • Ti H, Zhuang Z, Yu Q, Wang S. 2021. Progress of plant medicine-derived extracts and alkaloids on modulating viral infections and inflammation. Drug Des Devel Ther. 15:1385–1408. doi: 10.2147/DDDT.S299120.
  • Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. 2022. Curcumin: biological activities and modern pharmaceutical forms. Antibiotics. 11:135. doi: 10.3390/antibiotics11020135.
  • Vandekerckhove S, D'Hooghe M. 2015. Quinoline-based antimalarial hybrid compounds. Bioorg Med Chem. 23(16):5098–5119. doi: 10.1016/j.bmc.2014.12.018.
  • Varghese FS, Kaukinen P, Gläsker S, Bespalov M, Hanski L, Wennerberg K, Kümmerer BM, Ahola T. 2016. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res. 126:117–124. doi: 10.1016/j.antiviral.2015.12.012.
  • Varghese FS, van Woudenbergh E, Overheul GJ, Eleveld MJ, Kurver L, van Heerbeek N, van Laarhoven A, Miesen P, den Hartog G, de Jonge MI, et al. 2021. Berberine and obatoclax inhibit SARS-Cov-2 replication in primary human nasal epithelial cells in vitro. Viruses. 13:282. doi: 10.3390/v13020282.
  • Wang J, Qi F. 2020. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther. 14(3):149–150. doi: 10.5582/ddt.2020.03054.
  • Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. 2020. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 10:587269. doi: 10.3389/fcimb.2020.587269.
  • Waters MD, Warren S, Hughes C, Lewis P, Zhang F. 2022. Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: the special case of molnupiravir. Environ Mol Mutagen. 63(1):37–63. doi: 10.1002/em.22471.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367(6483):1260–1263. doi: 10.1126/science.abb2507.
  • Wright DJM. 2021. Prevention of the cytokine storm in COVID-19. Lancet Infect Dis. 21(1):25–26. doi: 10.1016/S1473-3099(20)30376-5.
  • WTO. Tracking SARS-CoV-2 variants. 1948–2022. [accessed 2023 Apr 20]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
  • Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, et al. 2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 10(5):766–788. doi: 10.1016/j.apsb.2020.02.008.
  • Wu SX, Xiong RG, Huang SY, Zhou DD, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. 2022. Effects and mechanisms of resveratrol for prevention and management of cancers: an updated review. Crit Rev Food Sci Nutr. 19:1–19.
  • Wu Y, Li JQ, Kim YJ, Wu J, Wang Q, Hao Y. 2011. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin J Integr Med. 17(6):444–452. doi: 10.1007/s11655-011-0640-3.
  • Wüst S, Schad P, Burkart S, Binder M. 2021. Comparative analysis of six IRF family members in alveolar epithelial cell-intrinsic antiviral responses. Cells. 10:2600. doi: 10.3390/cells10102600.
  • Xia L, Shi Y, Su J, Friedemann T, Tao Z, Lu Y, Ling Y, Lv Y, Zhao R, Geng Z, et al. 2021. Shufeng Jiedu, a promising herbal therapy for moderate COVID-19: antiviral and anti-inflammatory properties, pathways of bioactive compounds, and a clinical real-world pragmatic study. Phytomedicine. 85:153390. doi: 10.1016/j.phymed.2020.153390.
  • Xiao M, Tian J, Zhou Y, Xu X, Min X, Lv Y, Peng M, Zhang Y, Yan D, Lang S, et al. 2020. Efficacy of Huoxiang Zhengqi dropping pills and Lianhua Qingwen granules in treatment of COVID-19: a randomized controlled trial. Pharmacol Res. 161:105126. doi: 10.1016/j.phrs.2020.105126.
  • Xu J, Xu Z, Zheng W. 2017. A review of the antiviral role of green tea catechins. Molecules. 22:1337. doi: 10.3390/molecules22081337.
  • Yang M, Wei J, Huang T, Lei L, Shen C, Lai J, Yang M, Liu L, Yang Y, Liu G, et al. 2021. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother Res. 35(3):1127–1129. doi: 10.1002/ptr.6916.
  • Yang MW, Chen F, Zhu DJ, Li JZ, Zhu JL, Zeng W, Qu SL, Zhang Y. 2020. [Clinical efficacy of matrine and sodium chloride injection in treatment of 40 cases of COVID-19]. Zhongguo Zhong Yao Za Zhi. 45(10):2221–2231. Chinese. doi: 10.19540/j.cnki.cjcmm.20200323.501.
  • Yang R, Liu H, Bai C, Wang Y, Zhang X, Guo R, Wu S, Wang J, Leung E, Chang H, et al. 2020. Chemical composition and pharmacological mechanism of Qingfei Paidu decoction and Ma Xing Shi Gan decoction against Coronavirus Disease 2019 (COVID-19): in silico and experimental study. Pharmacol Res. 157:104820. doi: 10.1016/j.phrs.2020.104820.
  • Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, et al. 2020. Molecular architecture of the SARS-CoV-2 virus. Cell. 183(3):730–738.e713. doi: 10.1016/j.cell.2020.09.018.
  • Yu JW, Wang L, Bao LD. 2020. Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method. J Funct Foods. 71:104016. doi: 10.1016/j.jff.2020.104016.
  • Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, Zhao Y, Lin G, Chen H, Chen L, et al. 2021. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 85:153364. doi: 10.1016/j.phymed.2020.153364.
  • Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, Lan S, Slack RL, Kirby KA, Bassit L, et al. 2021. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms. 9:893. doi: 10.3390/microorganisms9050893.
  • Zhang JL, Li YH, Wang LL, Liu HQ, Lu SY, Liu Y, Li K, Liu B, Li SY, Shao FM, et al. 2021a. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduct Target Ther. 6:414.
  • Zhang R, Li X, Zhang X, Qin H, Xiao W. 2021b. Machine learning approaches for elucidating the biological effects of natural products. Nat Prod Rep. 38(2):346–361. doi: 10.1039/d0np00043d.
  • Zhang S, Huang W, Ren L, Ju X, Gong M, Rao J, Sun L, Li P, Ding Q, Wang J, et al. 2022. Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res. 32(1):9–23. doi: 10.1038/s41422-021-00581-y.
  • Zhang YN, Zhang QY, Li XD, Xiong J, Xiao SQ, Wang Z, Zhang ZR, Deng CL, Yang XL, Wei HP, et al. 2020. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerg Microbes Infect. 9(1):1170–1173. doi: 10.1080/22221751.2020.1772676.
  • Zheng WJ, Yan Q, Ni YS, Zhan SF, Yang LL, Zhuang HF, Liu XH, Jiang Y. 2020. Examining the effector mechanisms of Xuebijing injection on COVID-19 based on network pharmacology. BioData Min. 13:17.
  • Zhou S, Feng J, Xie Q, Huang T, Xu X, Zhou D, Zhang W, Sun S, Liu X, Wu X, et al. 2021. Traditional Chinese medicine Shenhuang granule in patients with severe/critical COVID-19: a randomized controlled multicenter trial. Phytomedicine. 89:153612. doi: 10.1016/j.phymed.2021.153612.
  • Zhu Y, Han Q, Wang L, Wang B, Chen J, Cai B, Wu C, Zhu X, Liu F, Han D, et al. 2023. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway. J Ethnopharmacol. 301:115763. doi: 10.1016/j.jep.2022.115763.
  • Zong X, Liang N, Wang J, Li H, Wang D, Chen Y, Zhang H, Jiao L, Li A, Wu G, et al. 2022. Treatment effect of Qingfei Paidu decoction combined with conventional treatment on COVID-19 patients and other respiratory diseases: a multi-center retrospective case series. Front Pharmacol. 13:849598. doi: 10.3389/fphar.2022.849598.