55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-wide analysis of the MATE gene family and expression analysis of subfamily III genes in response to aluminium toxicity in pineapple

, , , , , , & show all
Received 17 Jan 2024, Accepted 03 Apr 2024, Published online: 22 Apr 2024

References

  • Ali, E., Saand, M. A., Khan, A. R., Shah, J. M., Feng, S., Ming, C., & Sun, P. (2021). Genome-wide identification and expression analysis of detoxification efflux carriers (DTX) genes family under abiotic stresses in flax. Physiologia Plantarum, 171(4), 483–501. https://doi.org/10.1111/ppl.13105
  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(suppl_2), W202–W208. https://doi.org/10.1093/nar/gkp335
  • Bashir, K., Ishimaru, Y., Shimo, H., Kakei, Y., Senoura, T., Takahashi, R., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Science and Plant Nutrition, 57(6), 803–812. https://doi.org/10.1080/00380768.2011.637305
  • Burko, Y., Geva, Y., Refael-Cohen, A., Shleizer-Burko, S., Shani, E., Berger, Y., Halon, E., Chuck, G., Moshelion, M., & Ori, N. (2011). From organelle to organ: ZRIZI MATE-type transporter is an organelle transporter that enhances organ initiation. Plant and Cell Physiology, 52(3), 518–527. https://doi.org/10.1093/pcp/pcr007
  • Chandran, D., Sharopova, N., VandenBosch, K. A., Garvin, D. F., & Samac, D. A. (2008). Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biology, 8(1), 1–17. https://doi.org/10.1186/1471-2229-8-89
  • Chauhan, D. K., Yadav, V., Vaculík, M., Gassmann, W., Pike, S., Arif, N., Singh, V. P., Deshmukh, R., Sahi, S., & Tripathi, D. K. (2021). Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Critical Reviews in Biotechnology, 41(5), 715–730. https://doi.org/10.1080/07388551.2021.1874282
  • Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Chen, W., Tang, L., Wang, J., Zhu, H., Jin, J., Yang, J., & Fan, W. (2022). Research advances in the mutual mechanisms regulating response of plant roots to phosphate deficiency and aluminum toxicity. International Journal of Molecular Sciences, 23(3), 1137. https://doi.org/10.3390/ijms23031137
  • Debeaujon, I., Peeters, A. J., Léon-Kloosterziel, K. M., & Koornneef, M. (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell, 13(4), 853–871. https://doi.org/10.1105/tpc.13.4.853
  • Diener, A. C., Gaxiola, R. A., & Fink, G. R. (2001). Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. The Plant Cell, 13(7), 1625–1638. https://doi.org/10.1105/TPC.010035
  • Dipierro, N., Mondelli, D., Paciolla, C., Brunetti, G., & Dipierro, S. (2005). Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. Journal of Plant Physiology, 162(5), 529–536. https://doi.org/10.1016/j.jplph.2004.06.008
  • Dobritzsch, M., Lübken, T., Eschen-Lippold, L., Gorzolka, K., Blum, E., Matern, A., Marillonnet, S., Böttcher, C., Dräger, B., & Rosahl, S. (2016). MATE transporter-dependent export of hydroxycinnamic acid amides. The Plant Cell, 28(2), 583–596. https://doi.org/10.1105/tpc.15.00706
  • Doshi, R., McGrath, A. P., Piñeros, M., Szewczyk, P., Garza, D. M., Kochian, L. V., & Chang, G. (2017). Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from sorghum bicolor. Scientific Reports, 7(1), 17996. https://doi.org/10.1038/s41598-017-18146-8
  • Duan, W., Lu, F., Cui, Y., Zhang, J., Du, X., Hu, Y., & Yan, Y. (2022). Genome-wide identification and characterisation of wheat MATE genes reveals their roles in aluminium tolerance. International Journal of Molecular Sciences, 23(8), 4418. https://doi.org/10.3390/ijms23084418
  • Du, Z., Su, Q., Wu, Z., Huang, Z., Bao, J., Li, J., Tu, H., Zeng, C., Fu, J., & He, H. (2021). Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa). BMC Ecology and Evolution, 21(1), 1–14. https://doi.org/10.1186/s12862-021-01873-y
  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995
  • Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology, 153(4), 1678–1691. https://doi.org/10.1104/pp.110.156794
  • Foy, C. D. (1988). Plant adaptation to acid, aluminum-toxic soils. Communications in Soil Science and Plant Analysis, 19(7–12), 959–987. https://doi.org/10.1080/00103628809367988
  • Fujii, M., Yokosho, K., Yamaji, N., Saisho, D., Yamane, M., Takahashi, H., Sato, K., Nakazono, M., & Ma, J. F. (2012). Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications, 3(1), 713. https://doi.org/10.1038/ncomms1726
  • Fujii, M., Yokosho, K., Yamaji, N., Saisho, D., Yamane, M., Takahashi, H., Sato, K., Nakazono, M., & Ma, J. F. 2012. Acquisition of aluminium tolerance by modification of a single gene in barley. Nature communications, 3, 713. https://doi.org/10.1038/ncomms1726
  • Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K., & Ma, J. F. (2007). An aluminum-activated citrate transporter in barley. Plant and Cell Physiology, 48(8), 1081–1091. https://doi.org/10.1093/pcp/pcm091
  • Gani, U., Sharma, P., Tiwari, H., Nautiyal, A. K., Kundan, M., Wajid, M. A., Kesari, R., Nargotra, A., & Misra, P. (2021). Comprehensive genome-wide identification, characterization, and expression profiling of MATE gene family in Nicotiana tabacum. Gene, 783, 145554. https://doi.org/10.1016/j.gene.2021.145554
  • Green, L. S., & Rogers, E. E. (2004). FRD3 controls iron localization in Arabidopsis. Plant Physiology, 136(1), 2523–2531. https://doi.org/10.1104/pp.104.045633
  • Ishimaru, Y., Bashir, K., Nakanishi, H., & Nishizawa, N. K. (2011). The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signaling & Behavior, 6(10), 1624–1626. https://doi.org/10.4161/psb.6.10.17694
  • Ishimaru, Y., Kakei, Y., Shimo, H., Bashir, K., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. Journal of Biological Chemistry, 286(28), 24649–24655. https://doi.org/10.1074/jbc.M111.221168
  • Jia, M., Liu, X., Xue, H., Wu, Y., Shi, L., Wang, R., Chen, Y., Xu, N., Zhao, J., Shao, J., Qi, Y., An, L., Sheen, J., & Yu, F. (2019). Noncanonical ATG8–ABS3 interaction controls senescence in plants. Nature Plants, 5(2), 212–224. https://doi.org/10.1038/s41477-018-0348-x
  • Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhaes, J. V. (2015). Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66(1), 571–598. https://doi.org/10.1146/annurev-arplant-043014-114822
  • Kryvoruchko, I. S., Routray, P., Sinharoy, S., Torres-Jerez, I., Tejada-Jiménez, M., Finney, L. A., Nakashima, J., Pislariu, C. I., Benedito, V. A., González-Guerrero, M., Roberts, D. M., & Udvardi, M. K. (2018). An iron-activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation. Plant Physiology, 176(3), 2315–2329. https://doi.org/10.1104/pp.17.01538
  • Kumari, M., Taylor, G. J., & Deyholos, M. K. (2008). Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Molecular Genetics and Genomics, 279(4), 339–357. https://doi.org/10.1007/s00438-007-0316-z
  • Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7), 1812–1819. https://doi.org/10.1093/molbev/msx116
  • Kuroda, T., & Tsuchiya, T. (2009). Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794(5), 763–768. https://doi.org/10.1016/j.bbapap.2008.11.012
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Letunic, I., Doerks, T., & Bork, P. (2015). SMART: Recent updates, new developments and status in 2015. Nucleic Acids Research, 43(D1), D257–D260. https://doi.org/10.1093/nar/gku949
  • Li, Y., He, H., & He, L. F. (2019). Genome-wide analysis of the MATE gene family in potato. Molecular Biology Reports, 46(1), 403–414. https://doi.org/10.1007/s11033-018-4487-y
  • Li, L., He, Z., Pandey, G. K., Tsuchiya, T., & Luan, S. (2002). Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. Journal of Biological Chemistry, 277(7), 5360–5368. https://doi.org/10.1074/jbc.M108777200
  • Li, R., Li, J., Li, S., Qin, G., Novák, O., Pěnčík, A., Ljung, K., Aoyama, T., Liu, J., Murphy, A., Gu, H., Tsuge, T., Qu, L. J., & Copenhaver, G. P. (2014). ADP1 affects plant architecture by regulating local auxin biosynthesis. PLOS Genetics, 10(1), e1003954. https://doi.org/10.1371/journal.pgen.1003954
  • Liu, S., Li, Y., Fang, H., Huang, B., Zhao, C., Sun, C., Li, S., & Chen, K. (2022). Genome-wide identification and expression analysis of MATE gene family in citrus fruit (Citrus clementina). Genomics, 114(5), 110446. https://doi.org/10.1016/j.ygeno.2022.110446
  • Liu, J., Li, Y., Wang, W., Gai, J., & Li, Y. (2016). Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics, 17(1), 1–15. https://doi.org/10.1186/s12864-016-2559-8
  • Liu, J., Magalhaes, J. V., Shaff, J., & Kochian, L. V. (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal: For Cell and Molecular Biology, 57(3), 389–399. https://doi.org/10.1111/j.1365-313X.2008.03696.x
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Lu, P., Magwanga, R. O., Guo, X., Kirungu, J. N., Lu, H., Cai, X., Zhou, Z., Wei, Y., Wang, X., Zhang, Z., Peng, R., Wang, K., & Liu, F. (2018). Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. G3: Genes, Genomes, Genetics, 8(7), 2483–2500. https://doi.org/10.1534/g3.118.200232
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Ma, J. F. (2007). Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. International Review of Cytology, 264, 225–252. https://doi.org/10.1016/S0074-7696(07)64005-4
  • Magalhaes, J. V. (2010). How a microbial drug transporter became essential for crop cultivation on acid soils: Aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Annals of Botany, 106(1), 199–203. https://doi.org/10.1093/aob/mcq115
  • Magalhaes, J. V., Liu, J., Guimaraes, C. T., Lana, U. G., Alves, V. M., Wang, Y. H., Schaffert, R. E., Hoekenga, O. A., Piñeros, M. A., Shaff, J. E., Klein, P. E., Carneiro, N. P., Coelho, C. M., Trick, H. N., & Kochian, L. V. (2007). A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39(9), 1156–1161. https://doi.org/10.1038/ng2074
  • Ma, J. F., Hiradate, S., & Matsumoto, H. (1998). High aluminum resistance in buckwheat: II. Oxalic acid detoxifies aluminum internally. Plant Physiology, 117(3), 753–759. https://doi.org/10.1104/pp.117.3.753
  • Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J. M., Debeaujon, I., & Klein, M. (2007). The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-Antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell, 19(6), 2023–2038. https://doi.org/10.1105/tpc.106.046029
  • Maron, L. G., Pineros, M. A., Guimaraes, C. T., Magalhaes, J. V., Pleiman, J. K., Mao, C., Shaff, J., Belicuas, S. N. J., & Kochian, L. V. (2010). Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. The Plant Journal: For Cell and Molecular Biology, 61(5), 728–740. https://doi.org/10.1111/j.1365-313X.2009.04103.x
  • Ma, J. F., & Ryan, P. R. (2010). Foreword: Understanding how plants cope with acid soils. Functional Plant Biology, 37(4), 3–6. https://doi.org/10.1071/FPv37n4_FO
  • Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6(6), 273–278. https://doi.org/10.1016/s1360-1385(01)01961-6
  • Min, X., Jin, X., Liu, W., Wei, X., Zhang, Z., Ndayambaza, B., & Wang, Y. (2019). Transcriptome-wide characterization and functional analysis of MATE transporters in response to aluminum toxicity in Medicago sativa L. PeerJ, 7, e6302. https://doi.org/10.7717/peerj.6302
  • Miyauchi, H., Moriyama, S., Kusakizako, T., Kumazaki, K., Nakane, T., Yamashita, K., Hirata, K., Dohmae, N., Nishizawa, T., Ito, K., Miyaji, T., Moriyama, Y., Ishitani, R., & Nureki, O. (2017). Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nature Communications, 8(1), 1633. https://doi.org/10.1038/s41467-017-01541-0
  • Nawrath, C., Heck, S., Parinthawong, N., & Métraux, J. P. (2002). EDS5, an essential component of salicylic acid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. The Plant Cell, 14(1), 275–286. https://doi.org/10.1105/tpc.010376
  • Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M., & Moriyama, Y. (2006). The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends in Pharmacological Sciences, 27(11), 587–593. https://doi.org/10.1016/j.tips.2006.09.001
  • Phukunkamkaew, S., Tisarum, R., Pipatsitee, P., Samphumphuang, T., Maksup, S., & Cha-Um, S. (2021). Morpho-physiological responses of indica rice (Oryza sativa sub. indica) to aluminum toxicity at seedling stage. Environmental Science and Pollution Research, 28(23), 29321–29331. https://doi.org/10.1007/s11356-021-12804-1
  • Rahman, S. U., Han, J. C., Ahmad, M., Ashraf, M. N., Khaliq, M. A., Yousaf, M., Wang, Y., Yasin, G., Nawaz, M. F., Khan, K. A., & Du, Z. (2024). Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. Ecotoxicology and Environmental Safety, 269, 115791. https://doi.org/10.1016/j.ecoenv.2023.115791
  • Saad, K. R., Kumar, G., Puthusseri, B., Srinivasa, S. M., Giridhar, P., & Shetty, N. P. (2023). Genome-wide identification of MATE, functional analysis and molecular dynamics of DcMATE21 involved in anthocyanin accumulation in Daucus carota. Phytochemistry, 210, 113676. https://doi.org/10.1016/j.phytochem.2023.113676
  • Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M., Suravajhala, P., & Kavi Kishor, P. (2016). Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. Biometals, 29(2), 187–210. https://doi.org/10.1007/s10534-016-9910-z
  • Santos, A. L. D., Chaves-Silva, S., Yang, L., Maia, L. G. S., Chalfun-Júnior, A., Sinharoy, S., Zhao, J., & Benedito, V. A. (2017). Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology, 17(1), 1–13. https://doi.org/10.1186/s12870-017-1115-2
  • Sawaki, Y., Kihara-Doi, T., Kobayashi, Y., Nishikubo, N., Kawazu, T., Kobayashi, Y., Koyama, H., & Sato, S. (2013). Characterization of Al-responsive citrate excretion and citrate-transporting MATEs in Eucalyptus camaldulensis. Planta, 237(4), 979–989. https://doi.org/10.1007/s00425-012-1810-z
  • Scheepers, M., Spielmann, J., Boulanger, M., Carnol, M., Bosman, B., De Pauw, E., Goormaghtigh, E., Motte, P., & Hanikenne, M. (2020). Intertwined metal homeostasis, oxidative and biotic stress responses in the Arabidopsis frd3 mutant. The Plant Journal: For Cell and Molecular Biology, 102(1), 34–52. https://doi.org/10.1111/tpj.14610
  • Seo, P. J., Park, J., Park, M. J., Kim, Y. S., Kim, S. G., Jung, J. H., & Park, C. M. (2012). A golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochemical Journal, 442(3), 551–561. https://doi.org/10.1042/bj20111311
  • Shen, R., Ma, J., Kyo, M., & Iwashita, T. (2002). Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta, 215(3), 394–398. https://doi.org/10.1007/s00425-002-0763-z
  • Sun, X., Gilroy, E. M., Chini, A., Nurmberg, P. L., Hein, I., Lacomme, C., Birch, P. R., Hussain, A., Yun, B. W., & Loake, G. J. (2011). ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytologist, 192(2), 471–482. https://doi.org/10.1111/j.1469-8137.2011.03820.x
  • Suzuki, M., Sato, Y., Wu, S., Kang, B. H., & McCarty, D. R. (2015). Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate. The Plant Cell, 27(8), 2288–2300. https://doi.org/10.1105/tpc.15.00290
  • Terada, T., & Inui, K. I. (2008). Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochemical Pharmacology, 75(9), 1689–1696. https://doi.org/10.1016/j.bcp.2007.12.008
  • Tian, W., Hou, C., Ren, Z., Pan, Y., Jia, J., Zhang, H., Bai, F., Zhang, P., Zhu, H., He, Y., Luo, S., Li, L., & Luan, S. (2015). A molecular pathway for CO2 response in Arabidopsis guard cells. Nature Communications, 6(1), 6057. https://doi.org/10.1038/ncomms7057
  • Uhde Stone, C., Liu, J., Zinn, K. E., Allan, D. L., & Vance, C. P. (2005). Transgenic proteoid roots of white lupin: A vehicle for characterizing and silencing root genes involved in adaptation to P stress. The Plant Journal: For Cell and Molecular Biology, 44(5), 840–853. https://doi.org/10.1111/j.1365-313X.2005.02573.x
  • Upadhyay, N., Kar, D., Deepak Mahajan, B., Nanda, S., Rahiman, R., Panchakshari, N., Bhagavatula, L., & Datta, S. (2019). The multitasking abilities of MATE transporters in plants. Journal of Experimental Botany, 70(18), 4643–4656. https://doi.org/10.1093/jxb/erz246
  • Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77–78. https://doi.org/10.1093/jhered/93.1.77
  • Von Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171, 1–15. https://doi.org/10.1007/BF00009558
  • Wang, L., Bei, X., Gao, J., Li, Y., Yan, Y., & Hu, Y. (2016). The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. BMC Plant Biology, 16(1), 207. https://doi.org/10.1186/s12870-016-0895-0
  • Wang, J., Hou, Q., Li, P., Yang, L., Sun, X., Benedito, V. A., Wen, J., Chen, B., Mysore, K. S., & Zhao, J. (2017). Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis in Medicago truncatula. The Plant Journal: For Cell and Molecular Biology, 90(1), 79–95. https://doi.org/10.1111/tpj.13471
  • Wang, Z., Liu, Y., He, Y., Yang, Z., & You, J. (2022). Characterization of GmMATE13 in its contribution of citrate efflux and aluminum resistance in soybeans. Frontiers in Plant Science, 13, 1027560. https://doi.org/10.3389/fpls.2022.1027560
  • Wang, R., Liu, X., Liang, S., Ge, Q., Li, Y., Shao, J., Qi, Y., An, L., & Yu, F. (2015). A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. Journal of Experimental Botany, 66(20), 6327–6343. https://doi.org/10.1093/jxb/erv344
  • Wang, Z., Qian, C., Guo, X., Liu, E., Mao, K., Mu, C., Chen, N., Zhang, W., & Liu, H. (2016). ELS1, a novel MATE transporter related to leaf senescence and iron homeostasis in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 476(4), 319–325. https://doi.org/10.1016/j.bbrc.2016.05.121
  • Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., Lee, T. H., Jin, H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49. https://doi.org/10.1093/nar/gkr1293
  • Won, S. K., Lee, Y. J., Lee, H. Y., Heo, Y. K., Cho, M., & Cho, H. T. (2009). Cis-element-and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiology, 150(3), 1459–1473. https://doi.org/10.1104/pp.109.140905
  • Wu, X., Li, R., Shi, J., Wang, J., Sun, Q., Zhang, H., Xing, Y., Qi, Y., Zhang, N., & Guo, Y. D. (2014). Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana. Plant and Cell Physiology, 55(8), 1426–1436. https://doi.org/10.1093/pcp/pcu067
  • Xu, L., Shen, Z. L., Chen, W., Si, G. Y., Meng, Y., Guo, N., Sun, X., Cai, Y. P., Lin, Y., & Gao, J. S. (2019). Phylogenetic analysis of upland cotton MATE gene family reveals a conserved subfamily involved in transport of proanthocyanidins. Molecular Biology Reports, 46(1), 161–175. https://doi.org/10.1007/s11033-018-4457-4
  • Yang, X. Y., Yang, J. L., Zhou, Y., Pineros, M. A., Kochian, L. V., Li, G. X., & Zheng, S. J. (2011). A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant, Cell & Environment, 34(12), 2138–2148. https://doi.org/10.1111/j.1365-3040.2011.02410.x
  • Yokosho, K., Yamaji, N., Fujii-Kashino, M., & Ma, J. F. (2016). Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice. Plant and Cell Physiology, 57(5), 976–985. https://doi.org/10.1093/pcp/pcw026
  • Yokosho, K., Yamaji, N., & Ma, J. F. (2010). Isolation and characterisation of two MATE genes in rye. Functional Plant Biology, 37(4), 296–303. https://doi.org/10.1071/FP09265
  • Yokosho, K., Yamaji, N., & Ma, J. F. (2011). An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal: For Cell and Molecular Biology, 68(6), 1061–1069. https://doi.org/10.1111/j.1365-313X.2011.04757.x
  • Zhang, W., Liao, L., Xu, J., Han, Y., & Li, L. (2021). Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus × domestica borkh). BMC Genomics, 22(1), 632. https://doi.org/10.1186/s12864-021-07943-1
  • Zhang, H., Zhao, F. G., Tang, R. J., Yu, Y., Song, J., Wang, Y., Li, L., & Luan, S. (2017). Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Proceedings of the National Academy of Sciences, 114(10), E2036–E2045. https://doi.org/10.1073/pnas.1616203114
  • Zhang, H., Zhu, H., Pan, Y., Yu, Y., Luan, S., & Li, L. (2014). A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in arabidopsis. Molecular Plant, 7(10), 1522–1532. https://doi.org/10.1093/mp/ssu063
  • Zheng, Z., Gao, J., Wang, C., Peng, H., Zeng, J., & Chen, F. (2023). Genome-wide identification and expression pattern analysis of the MATE gene family in carmine radish (Raphanus sativus L). Gene, 887, 147734. https://doi.org/10.1016/j.gene.2023.147734
  • Zhu, H., Wu, J., Jiang, Y., Jin, J., Zhou, W. E. I., Wang, Y. U., Han, G., Zhao, Y., & Cheng, B. (2016). Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment. Journal of Genetics, 95(3), 691–704. https://doi.org/10.1007/s12041-016-0686-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.