264
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Amber LEDs outperform red, blue, and red-blue-amber LEDs for lettuce

, , , , &
Received 03 Nov 2023, Accepted 15 Apr 2024, Published online: 29 Apr 2024

References

  • Andersen, Ø. M., & Jordheim, M. (2010). Anthocyanins. Encyclopedia of Life Sciences, 1–12. https://doi.org/10.1002/9780470015902.a0001909.pub2
  • Anderson, J. M., Chow, W. S., & Park, Y.-I. (1995). The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosynthesis Research, 46(1), 129–139. https://doi.org/10.1007/BF00020423
  • Aro, E.-M., Virgin, I., & Andersson, B. (1993). Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1143(2), 113–134. https://doi.org/10.1016/0005-2728(93)90134-2
  • Avercheva, O., Berkovich, Y. A., Smolyanina, S., Bassarskaya, E., Pogosyan, S., Ptushenko, V., Erokhin, A., & Zhigalova, T. (2014). Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue–red LED assembly designed for space agriculture. Advances in Space Research, 53(11), 1574–1581. https://doi.org/10.1016/j.asr.2014.03.003
  • Baias, M., Dumez, J.-N., Svensson, P. H., Schantz, S., Day, G. M., & Emsley, L. (2013). De Novo determination of the crystal structure of a large drug molecule by crystal structure prediction-based powder NMR crystallography. Journal of the American Chemical Society, 135(46), 17501–17507. https://doi.org/10.1021/ja4088874
  • Bergstrand, K.-J., & Schüssler, H. (2013). Growth, development and photosynthesis of some horticultural plants as affected by different supplementary lighting technologies. European Journal of Horticultural Science, 119–125.
  • Brault, D., Gueymard, C., Boily, R., & Gosselin, A. (1989). Contribution of HPS lighting to the heating requirements of a greenhouse. Transactions of the American Society of Agricultural Engineers, 89(4039).
  • Brougham, R. (1960). The relationship between the critical leaf area, total chlorophyll content, and maximum growth-rate of some pasture and crop planst. Annals of Botany, 24(4), 463–474. https://doi.org/10.1093/oxfordjournals.aob.a083719
  • Brown, C. S., Schuerger, A. C., & Sager, J. C. (1995). Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science, 120(5), 808–813. https://doi.org/10.21273/JASHS.120.5.808
  • Bugbee, B. (2016). Toward an optimal spectral quality for plant growth and development: The importance of radiation capture. Acta horticulturae, 1134(1134), 1–12. https://doi.org/10.17660/ActaHortic.2016.1134.1
  • Bula, R., Morrow, R., Tibbitts, T., Barta, D., Ignatius, R., & Martin, T. (1991). Light-emitting diodes as a radiation source for plants. Hort Science, 26(2), 203–205. https://doi.org/10.21273/HORTSCI.26.2.203
  • Colmano, G. (1962). Visible absorption spectrum of chlorophyll a, b and β-carotene molecules mixed in monolayers at a water–air interface. Nature, 193(4822), 1287–1288. https://doi.org/10.1038/1931287a0
  • Cooper, A. (1979). The ABC of NFT. Nutrient film technique. The world’s first method of crop production without a solid rooting medium. Grower Books.
  • Cosgrove, D. J. (1981). Rapid suppression of growth by blue light occurrence, time course, and general characteristics. Plant Physiology, 67(3), 584–590. https://doi.org/10.1104/pp.67.3.584
  • Deram, P., Lefsrud, M. G., & Orsat, V. (2014). Supplemental lighting orientation and red-to-blue ratio of light-emitting diodes for greenhouse tomato production. Hort Science, 49(4), 448–452. https://doi.org/10.21273/HORTSCI.49.4.448
  • Devlin, P. F., Christie, J. M., & Terry, M. J. (2007). Many hands make light work. Journal of Experimental Botany, 58(12), 3071–3077. https://doi.org/10.1093/jxb/erm251
  • Domurath, N., Schroeder, F.-G., & Glatzel, S. (2012). Light response curves of selected plants under different light conditions. Acta horticulturae, 956(956), 291–298. https://doi.org/10.17660/ActaHortic.2012.956.33
  • Dougher, T. A., & Bugbee, B. (2001). Evidence for yellow light suppression of lettuce growth. Photochemistry and Photobiology, 73(2), 208–212. https://doi.org/10.1562/0031-8655(2001)073<0208:EFYLSO>2.0.CO;2
  • Dueck, T., Janse, J., Eveleens, B., Kempkes, F., & Marcelis, L. (2011). Growth of tomatoes under hybrid LED and HPS lighting. Acta horticulturae, 952(952), 335–342. https://doi.org/10.17660/ActaHortic.2012.952.42
  • Elkins, C., & van Iersel, M. W. (2020). Longer photoperiods with the same daily light integral increase daily electron transport through photosystem II in lettuce. Plants, 9(9), 1–14. https://doi.org/10.3390/plants9091172
  • Erwin, J., & Gesick, E. (2017). Photosynthetic responses of Swiss chard, kale, and spinach cultivars to irradiance and carbon dioxide concentration. Hort Science, 52(5), 706–712. https://doi.org/10.21273/HORTSCI11799-17
  • Esmaili, M., Aliniaeifard, S., Mashal, M., Ghorbanzadeh, P., Mehdi, S., Gavilan, M. U., Carrillo, F. F., Lastochkina, O., & Tao, L. (2020). CO2 enrichment and increasing light intensity till a threshold level, enhance growth and water use efficiency of lettuce plants in controlled environment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2244–2262. https://doi.org/10.15835/nbha48411835
  • Esmaili, M., Aliniaeifard, S., Mashal, M., Vakilian, K. A., Ghorbanzadeh, P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural water management, 258, 1–11. https://doi.org/10.1016/j.agwat.2021.107201
  • Evans, J. (1987). The dependence of quantum yield on wavelength and growth irradiance. Australian Journal of Plant Physiology, 14(1), 69–79. https://doi.org/10.1071/PP9870069
  • Fan, X.-X., Xu, Z.-G., Liu, X.-Y., Tang, C.-M., Wang, L.-W., & Han, X.-L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 153, 50–55. https://doi.org/10.1016/j.scienta.2013.01.017
  • Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93–100. https://doi.org/10.1104/pp.110.166181
  • Franklin, K. A., Larner, V. S., & Whitelam, G. C. (2004). The signal transducing photoreceptors of plants. The International Journal of Developmental Biology, 49(5–6), 653–664. https://doi.org/10.1387/ijdb.051989kf
  • Gajc-Wolska, J., Kowalczyk, K., Metera, A., Mazur, K., Bujalski, D., & Hemka, L. (2013). Effect of supplementary lighting on selected physiological parameters and yielding of tomato plants. Folia Horticulturae, 25(2), 153–159. https://doi.org/10.2478/fhort-2013-0017
  • Giliberto, L., Perrotta, G., Pallara, P., Weller, J. L., Fraser, P. D., Bramley, P. M., Fiore, A., Tavazza, M., & Giuliano, G. (2005). Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology, 137(1), 199–208. https://doi.org/10.1104/pp.104.051987
  • Goins, G., Yorio, N., Sanwo, M., & Brown, C. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 48(7), 1407–1413. https://doi.org/10.1093/jxb/48.7.1407
  • Gomez, C., Morrow, R. C., Bourget, C. M., Massa, G. D., & Mitchell, C. A. (2013). Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Hort Technology, 23(1), 93–98. https://doi.org/10.21273/HORTTECH.23.1.93
  • Goto, E. (2003). Effects of light quality on growth of crop plants under artificial lighting. Environment Control in Biology, 41(2), 121–132. https://doi.org/10.2525/ecb1963.41.121
  • Haitz, R., & Tsao, J. Y. (2011). Solid-state lighting: ‘the case’ 10 years after and future prospects. Physica Status Solidi (A), 208(1), 17–29. https://doi.org/10.1002/pssa.201026349
  • Hakala, M., Tuominen, I., Keränen, M., Tyystjärvi, T., & Tyystjärvi, E. (2005). Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. BBA-Bioenerg, 1706(1–2), 68–80. https://doi.org/10.1016/j.bbabio.2004.09.001
  • Heo, J.-W., Kang, D.-H., Bang, H.-S., Hong, S.-G., Chun, C.-H., & Kang, K.-K. (2012). Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology, 30(1), 6–12. https://doi.org/10.7235/hort.2012.11118
  • Hernández, R., & Kubota, C. (2013). Leds supplemental lighting for vegetable transplant production: Spectral evaluation and comparisons with HID technology. Acta horticulturae, 1037(1037), 829–835. https://doi.org/10.17660/ActaHortic.2014.1037.110
  • Hernández, R., & Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66–74. https://doi.org/10.1016/j.envexpbot.2015.04.001
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular - California Agricultural Experiment Station, 347(2nd edit), 23–32.
  • Hoenecke, M., Bula, R., & Tibbitts, T. (1992). Importance of ‘blue’ photon levels for lettuce seedlings grown under red-light-emitting diodes. Hort Science, 27(5), 427–430. https://doi.org/10.21273/HORTSCI.27.5.427
  • Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61(11), 3107–3117. https://doi.org/10.1093/jxb/erq132
  • Hogewoning, S. W., Wientjes, E., Douwstra, P., Trouwborst, G., van Ieperen, W., Croce, R., & Harbinson, J. (2012). Photosynthetic quantum yield dynamics: From photosystems to leaves. The Plant Cell, 24(5), 1921–1935. https://doi.org/10.1105/tpc.112.097972
  • Inada, K. (1976). Action spectra for photosynthesis in higher plants. Plant & Cell Physiology, 17(2), 355–365. https://doi.org/10.1093/oxfordjournals.pcp.a075288
  • Inoue, S.-I., Kinoshita, T., Takemiya, A., Doi, M., & Shimazaki, K.-I. (2008). Leaf positioning of Arabidopsis in response to blue light. Molecular Plant, 1(1), 15–26. https://doi.org/10.1093/mp/ssm001
  • Johkan, M., Shoji, K., Goto, F., Hahida, S., & Yoshihara, T. (2012). Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany, 75, 128–133. https://doi.org/10.1016/j.envexpbot.2011.08.010
  • Kim, H.-H., Goins, G. D., Wheeler, R. M., & Sager, J. C. (2004). Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. Hort Science, 39(7), 1617–1622. https://doi.org/10.21273/HORTSCI.39.7.1617
  • Kok, B. (1948). A critical consideration of the quantum yield of Chlorella-photosynthesis. W. Junk.
  • Kozuka, T., Kong, S.-G., Doi, M., Shimazaki, K.-I., & Nagatani, A. (2011). Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis. The Plant Cell, 23(10), 3684–3695. https://doi.org/10.1105/tpc.111.085852
  • Lariguet, P., & Dunand, C. (2005). Plant photoreceptors: Phylogenetic overview. Journal of Molecular Evolution, 61(4), 559–569. https://doi.org/10.1007/s00239-004-0294-2
  • Li, H., Tang, C., Xu, Z., Liu, X., & Han, X. (2012). Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Sciences, 4(4), 1–12. https://doi.org/10.5539/jas.v4n4p262
  • Liu, W. (2012). Light environmental management for artificial protected horticulture. Agrotechnology, 1(1), 1–4. https://doi.org/10.4172/2168-9881.1000101
  • Li, C.-X., Xu, Z.-G., Dong, R.-Q., Chang, S.-X., Wang, L.-Z., Khalil-Ur-Rehman, M., & Tao, J.-M. (2017). An RNA-Seq analysis of grape plantlets grown in vitro reveals different responses to blue, green, red LED light, and white fluorescent light. Frontiers in Plant Science, 8, 1–16. https://doi.org/10.3389/fpls.2017.00078
  • Long, S., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology & Plant Molecular Biology, 45(1), 633–662. https://doi.org/10.1146/annurev.pp.45.060194.003221
  • Mansoori, M., Wu, B.-S., Addo, P. W., MacPherson, S., & Lefsrud, M. (2023). Growth responses of tomato plants to different wavelength ratios of amber, red, and blue light. Scientia Horticulturae, 322, 1–11. https://doi.org/10.1016/j.scienta.2023.112459
  • Martineau, V., Lefsrud, M., Naznin, M. T., & Kopsell, D. A. (2012). Comparison of light-emitting diode and high-pressure sodium light treatments for hydroponics growth of Boston lettuce. Hort Science, 47(4), 477–482. https://doi.org/10.21273/HORTSCI.47.4.477
  • Massa, G. D., Kim, H.-H., Wheeler, R. M., & Mitchell, C. A. (2008). Plant productivity in response to LED lighting. Hort Science, 43(7), 1951–1956. https://doi.org/10.21273/HORTSCI.43.7.1951
  • McCree, K. J. (1972). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191–216. https://doi.org/10.1016/0002-1571(71)90022-7
  • Ménard, C., Dorais, M., Hovi, T., & Gosselin, A. (2005). Developmental and physiological responses of tomato and cucumber to additional blue light. Acta horticulturae, 711(711), 291–296. https://doi.org/10.17660/ActaHortic.2006.711.39
  • Mickens, M., Skoog, E., Reese, L., Barnwell, P., Spencer, L., Massa, G., & Wheeler, R. (2018). A strategic approach for investigating light recipes for ‘outredgeous’ red romaine lettuce using white and monochromatic LEDs. Life Sciences and Space Research, 19, 53–62. https://doi.org/10.1016/j.lssr.2018.09.003
  • Mitchell, C. A. (2015). Academic research perspective of LEDs for the horticulture industry. Hort Science, 50(9), 1293–1296. https://doi.org/10.21273/HORTSCI.50.9.1293
  • Mitchell, C. A., Dzakovich, M. P., Gomez, C., Lopez, R., Burr, J. F., Hernández, R., Kubota, C., Currey, C. J., Meng, Q., & Runkle, E. S. (2015). Light-emitting diodes in horticulture. Horticulture Research, 43, 1–87. https://doi.org/10.1002/9781119107781.ch01
  • Mizuno, T., Amaki, W., & Watanabe, H. (2011). Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta horticulturae, 907, 179–184. https://doi.org/10.17660/ActaHortic.2011.907.25
  • Modarelli, G. C., Paradiso, R., Arena, C., De Pascale, S., & Van Labeke, M.-C. (2022). High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae, 8(2), 1–13. https://doi.org/10.3390/horticulturae8020114
  • Moe, R. (1994). Physiological aspects of supplementary lighting in horticulture. Acta horticulturae, 418(418), 17–24. https://doi.org/10.17660/ActaHortic.1997.418.1
  • Morello, V., Brousseau, V. D., Wu, N., Wu, B.-S., MacPherson, S., & Lefsrud, M. (2022). Light quality impacts vertical growth rate, phytochemical yield and cannabinoid production efficiency in cannabis sativa. Plants, 11(21), 1–19. https://doi.org/10.3390/plants11212982
  • Morrow, R. C. (2008). LED lighting in horticulture. Hort Science, 43(7), 1947–1950. https://doi.org/10.21273/HORTSCI.43.7.1947
  • Murchie, E. H., & Niyogi, K. K. (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155(1), 86–92. https://doi.org/10.1104/pp.110.168831
  • Nelson, J. A., Bugbee, B., & Campbell, D. A. (2014). Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. Public Library of Science ONE, 9(6), 1–10. https://doi.org/10.1371/journal.pone.0099010
  • Nishio, J. (2000). Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant, Cell & Environment, 23(6), 539–548. https://doi.org/10.1046/j.1365-3040.2000.00563.x
  • Olle, M., & Viršile, A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22(2), 223–234. https://doi.org/10.23986/afsci.7897
  • Ouzounis, T., Parjikolaei, B. R., Fretté, X., Rosenqvist, E., & Ottosen, C.-O. (2015). Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Frontiers in Plant Science, 6(19), 1–14. https://doi.org/10.3389/fpls.2015.00019
  • Schwartzbach, S. D. (1990). Photocontrol of organelle biogenesis in Euglena. Photochemistry and Photobiology, 51(2), 231–254. https://doi.org/10.1111/j.1751-1097.1990.tb01708.x
  • Singh, D., Basu, C., Meinhardt-Wollweber, M., & Roth, B. (2015). Leds for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49, 139–147. https://doi.org/10.1016/j.rser.2015.04.117
  • Son, K.-H., & Oh, M.-M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Hort Science, 48(8), 988–995. https://doi.org/10.21273/HORTSCI.48.8.988
  • Stutte, G. W. (2009). Light-emitting diodes for manipulating the phytochrome apparatus. Hort Science, 44(2), 231–234. https://doi.org/10.21273/HORTSCI.44.2.231
  • Sun, J., Nishio, J. N., & Vogelmann, T. C. (1998). Green light drives CO2 fixation deep within leaves. Plant & Cell Physiology, 39(10), 1020–1026. https://doi.org/10.1093/oxfordjournals.pcp.a029298
  • Swan, B., & Bugbee, B. (2017). Increasing blue light from LED’s reduces growth of lettuce. SAE Technical Papers, 23(3), 1–12. https://doi.org/10.4271/2009-01-2565
  • Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends in plant science, 16(1), 53–60. https://doi.org/10.1016/j.tplants.2010.10.001
  • Takahashi, S., Milward, S. E., Yamori, W., Evans, J. R., Hillier, W., & Badger, M. R. (2010). The solar action spectrum of photosystem II damage. Plant Physiology, 153(3), 988–993. https://doi.org/10.1104/pp.110.155747
  • Tennessen, D. J., Singsaas, E. L., & Sharkey, T. D. (1994). Light-emitting diodes as a light source for photosynthesis research. Photosynthesis Research, 39(1), 85–92. https://doi.org/10.1007/BF00027146
  • Terashima, I., Fujita, T., Inoue, T., Chow, W. S., & Oguchi, R. (2009). Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant & Cell Physiology, 50(4), 684–697. https://doi.org/10.1093/pcp/pcp034
  • Trouwborst, G., Oosterkamp, J., Hogewoning, S. W., Harbinson, J., & Van Ieperen, W. (2010). The responses of light interception, photosynthesis and fruit yield of cucumber to LED‐lighting within the canopy. Physiologia Plantarum, 138(3), 289–300. https://doi.org/10.1111/j.1399-3054.2009.01333.x
  • Van Ieperen, W., & Trouwborst, G. (2007). The application of LEDs as assimilation light source in greenhouse horticulture: A simulation study. Acta horticulturae, 801(801), 1407–1414. https://doi.org/10.17660/ActaHortic.2008.801.173
  • Wang, J., Lu, W., Tong, Y., & Yang, Q. (2016). Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science, 7, 1–10. https://doi.org/10.3389/fpls.2016.00250
  • Weber, C. (2016). Nutrient content of cabbage and lettuce microgreens grown on vermicompost and hydroponic growing pads. Journal of Horticulture, 3(4), 1–5. https://doi.org/10.4172/2376-0354.1000190
  • Wheeler, R. M. (2008). A historical background of plant lighting: An introduction to the workshop. Hort Science, 43(7), 1942–1943. https://doi.org/10.21273/HORTSCI.43.7.1942
  • Wu, B.-S., MacPherson, S., & Lefsrud, M. (2021). Filtering light-emitting diodes to investigate amber and red spectral effects on lettuce growth. Plants, 10(6), 1–11. https://doi.org/10.3390/plants10061075
  • Wu, B.-S., Mansoori, M., Trumpler, K., Addo, P. W., MacPherson, S., & Lefsrud, M. (2023). Effect of amber (595 nm) light supplemented with narrow blue (430 nm) light on tomato biomass. Plants, 12(13), 1–11. https://doi.org/10.3390/plants12132457
  • Yang, Y., Xiao, P., & Yang, Q. (2011). Effects of LED light quality R/B to growth of sweet potato plantlets in vitro and energy consumptions of lighting. Acta horticulturae, (907), 403–407. https://doi.org/10.17660/ActaHortic.2011.907.68.
  • Yeh, N., & Chung, J.-P. (2009). High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13(8), 2175–2180. https://doi.org/10.1016/j.rser.2009.01.027
  • Yorio, N. C., Goins, G. D., Kagie, H. R., Wheeler, R. M., & Sager, J. C. (2001). Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. Hort Science, 36(2), 380–383. https://doi.org/10.21273/HORTSCI.36.2.380