62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of aggregate shape on the macrotexture and performance of chip seal: a laboratory study

ORCID Icon, , , ORCID Icon &
Received 29 Dec 2022, Accepted 21 Feb 2024, Published online: 15 Apr 2024

References

  • Adams, J. M., & Richard Kim, Y. (2014). Mean profile depth analysis of field and laboratory traffic-loaded chip seal surface treatments. International Journal of Pavement Engineering, 15(7), 645–656. doi:10.1080/10298436.2013.851790
  • Aktaş, B., Karaşahin, M., Saltan, M., Gürer, C., & Uz, V. E. (2013). Effect of aggregate surface properties on chip seal retention performance. Construction and Building Materials, 44, 639–644. doi:10.1016/j.conbuildmat.2013.03.060
  • Aktaş, B., Karaşahin, M., & Tiğdemir, M. (2013). Developing a macrotexture prediction model for chip seals. Construction and Building Materials, 41, 784–789. doi:10.1016/j.conbuildmat.2012.12.019
  • Alderson, A. (2006). Update of the Austroads sprayed seal design method (No. AP-T68/06).
  • Arasan, S., Yenera, E., Hattatoglu, F., Hinislioglua, S., & Akbuluta, S. (2011). Correlation between shape of aggregate and mechanical properties of asphalt concrete: Digital image processing approach. Road Materials and Pavement Design, 12(2), 239–262.
  • ASTM D1139. (2017). Standard specification for aggregate for single or multiple bituminous surface treatments. ASTM International.
  • ASTM D7000-11. (2011). Standard test method for sweep test of bituminous emulsion surface treatment specimens. West Conshohocken, PA: ASTM International.
  • Attia, M. I., Abdelrahman, M. A., Molakatalla, U., & Salem, H. M. (2009). Field evaluation of asphalt film thickness as a design parameter in Superpave mix design. International Journal of Pavement Research and Technology, 2(5), 205.
  • Bashir, M. J., Aziz, H. A., Yusoff, M. S., & Adlan, M. N. (2010). Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination, 254(1-3), 154–161. doi:10.1016/j.desal.2009.12.002
  • Boz, I., Kumbargeri, Y. S., & Kutay, M. E. (2019). Performance-based percent embedment limits for chip seals. Transportation Research Record, 2673(1), 182–192. doi:10.1177/0361198118821370
  • Buss, A. F., Guriguis, M., Claypool, B., Gransberg, D. D., & Williams, R. C. (2016). Chip seal design and specifications (No. FHWA-OR-RD-17-03). Oregon. Dept. of Transportation. Research Section.
  • Chaturabong, P. (2019). Evaluation of bleeding resistance in chip seal and asphalt emulsion residue rheology. Coatings, 9(10), 670. doi:10.3390/coatings9100670
  • DB33T 937-2014. (2014). Design and construction specification of synchronous chip seal in highway engineering. Zhejiang Provincial Bureau of Quality and Technical Supervision.
  • DB34/T 2615-2016. (2016). Technical specification for construction of synchronous chip seal of highway asphalt pavement. Anhui Provincial Bureau of Quality and Technical Supervision, People’s Republic of China.
  • DB61/T 1233-2019. (2019). Technical specifications for Fiber asphalt chip seal. Market Supervision Administration of Shaanxi Province, People’s Republic of China.
  • Diaz-Romero, P. L., & Braham, A. F. (2022). Refining particle size specification for asphalt emulsion. Construction and Building Materials, 350, 128812. doi:10.1016/j.conbuildmat.2022.128812
  • Do, M. T., & Cerezo, V. (2015). Road surface texture and skid resistance. Surface Topography: Metrology and Properties, 3(4), 043001. doi:10.1088/2051-672X/3/4/043001
  • Franco, L. A., & Sinatora, A. (2015). 3D surface parameters (ISO 25178-2): actual meaning of Spk and its relationship to Vmp. Precision Engineering, 40, 106–111. doi:10.1016/j.precisioneng.2014.10.011
  • Gransberg, D. D. (2006). Correlating chip seal performance and construction methods. Transportation Research Record, 1958(1), 54–58. doi:10.1177/0361198106195800106
  • Gransberg, D. D., & James, D. M. (2005). Chip seal best practices (Vol. 342). Transportation Research Board.
  • Gransberg, D. D., Karaca, I., & Burkett, W. R. (2002). Quantifying seal coat surface condition using digital image processing based on information theory. International Journal of Pavement Engineering, 3(4), 197–205. doi:10.1080/1029843021000101693
  • Guirguis, M., & Buss, A. (2017). Performance evaluation of emulsion and hot asphalt cement chip seal pavements. Journal of Materials in Civil Engineering, 29(11), 04017202. doi:10.1061/(ASCE)MT.1943-5533.0002057
  • Haider, S. W., Boz, I., Kumbargeri, Y., Kutay, E., & Musunuru, G. (2021). Development of performance related specifications for chip seal treatments. International Journal of Pavement Engineering, 22(3), 382–391. doi:10.1080/10298436.2019.1610173
  • Hamzah, M. O., Puzi, M. A. A., & Azizli, K. A. M. (2010). Properties of geometrically cubical aggregates and its mixture design. International Journal of Research and Reviews in Applied Sciences, 3(3), 249–256.
  • Hui, B., Zhang, Y., Ma, Z., Wang, H., & Yang, X. (2023). Identification and evaluation of spalling aggregate in chip seals in three dimensions. Construction and Building Materials, 364, 129899. doi:10.1016/j.conbuildmat.2022.129899
  • Janisch, D. W., & Gaillard, F. S. (1998). Minnesota seal coat handbook (No. MN/RC-1999-07,).
  • JTG 5142-2019. (2019). Technical specifications for maintenance of highway asphalt pavement. China Communication Press. 2004.
  • JTG E20-2011. (2011). Standard test methods of bitumen and bituminous mixtures for highway engineering (pp. 186–356). China communications Press.
  • JTG E42-2005. (2005). Test methods of aggregate for highway engineering (pp. 8–133). China communications Press.
  • Karaşahin, M., Saltan, M., & Çetin, S. (2014). Determination of seal coat deterioration using image processing methods. Construction and Building Materials, 53, 273–283.
  • Kim, Y. R., Adams, J., Castorena, C., Illias, M., Im, J. H., Bahia, H., Chaturabong, P., Hanz, A., & Johannes, P. T. (2017). Performance-related specifications for emulsified asphaltic binders used in preservation surface treatments. National Cooperative Highway Research Program, Washington, D.C.
  • Kodippily, S., Henning, T. F., & Ingham, J. M. (2014). Using a multi-phase model to predict flushing of sprayed seal pavements. International Journal of Pavement Engineering, 15(3), 267–278. doi:10.1080/10298436.2013.828839
  • Lee, J. (2008). Quantifying the benefits of improved rolling of chip seals. North Carolina State University.
  • Li, F. (2012). A methodology for characterizing pavement rutting condition using emerging 3D line laser imaging technology. Georgia Institute of Technology.
  • Li, F., Feng, J., Li, Y., & Zhou, S. (2021). Preventive maintenance technology for asphalt pavement (pp. 1–35). Springer.
  • Ma, Z., Wang, H., Hui, B., Jelagin, D., You, Z., & Feng, P. (2022). Optimal design of fresh sand fog seal mortar using response surface methodology (RSM): towards to its workability and rheological properties. Construction and Building Materials, 340, 127638. doi:10.1016/j.conbuildmat.2022.127638
  • Mahmoud, E., & Ortiz, E. (2014). Implementation of AIMS in measuring aggregate resistance to polishing, abrasion, and breakage (No. FHWA-ICT-14-014). Illinois Center for Transportation.
  • Masad, E., & Fletcher, T. (2005). Aggregate imaging system (AIMS): Basics and applications (No. FHAWA/TX-05/5-1707-01-1). Texas Transportation Institute, Texas A & M University System.
  • McHattie, R. L. (2001). Asphalt surface treatment guide (No. FHWA/AK/RD-85/08). Alaska. Dept. of Transportation and Public Facilities.
  • Mcleod, N. W., Chaffin, C. W., Holberg, A. E., Parker, C. F., Obrcian, V., Edwards, J. M., Campen, W. H., & Kari, W. J.. (1969). A general method of design for seal coats and surface treatments. In Proc. (Ed.), Proceedings of the Association of Asphalt Paving Technologists (Vol. 38, pp. 537–630).
  • Ozdemir, U., Kutay, M. E., Hibner, D., Lanotte, M., & Kumbargeri, Y. S. (2018). Quantification of aggregate embedment in chip seals using image processing. Journal of Transportation Engineering, Part B: Pavements, 144(4), 04018047. doi:10.1061/JPEODX.0000068
  • Rebekić, A., Lončarić, Z., Petrović, S., & Marić, S. (2015). Pearson's or Spearman's correlation coefficient-which one to use? Poljoprivreda, 21(2), 47–54. doi:10.18047/poljo.21.2.8
  • Shuler, S. (2011). Manual for emulsion-based chip seals for pavement preservation (Vol. 680). Transportation Research Board.
  • Uz, V. E., & Gökalp, İ. (2017). The effect of aggregate type, size and polishing levels to skid resistance of chip seals. Materials and Structures, 50(2), 1–14.
  • Walubita, L. F., Martin, A. E., & Glover, C. J. (2005). A Surface Performance-Graded (SPG) specification for surface treatment binders: Development and initial validation (No. FHWA/TX-05/0-1710-2). Texas Transportation Institute, Texas A & M University System.
  • Wang, H., Wang, C., Bu, Y., You, Z., Yang, X., & Oeser, M. (2020). Correlate aggregate angularity characteristics to the skid resistance of asphalt pavement based on image analysis technology. Construction and Building Materials, 242, 118150. doi:10.1016/j.conbuildmat.2020.118150
  • Wang, L., Sun, W., Tutumluer, E., & Druta, C. (2013). Evaluation of aggregate imaging techniques for quantification of morphological characteristics. Transportation Research Record, 2335(1), 39–49. doi:10.3141/2335-05
  • Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology, 160, 150–160. doi:10.1016/j.biortech.2014.01.021
  • Yaacob, H., Hainin, M. R., Woodward, D., & Woodside, A. (2008). Changes in surface dressing texture as related to time and chipping size. Malaysian Journal of Civil Engineering, 20(1), 1–11.
  • You, L., You, Z., Dai, Q., Xie, X., Washko, S., & Gao, J. (2019). Investigation of adhesion and interface bond strength for pavements underlying chip-seal: Effect of asphalt-aggregate combinations and freeze-thaw cycles on chip-seal. Construction and Building Materials, 203, 322–330. doi:10.1016/j.conbuildmat.2019.01.058
  • Zaman, M., Gransberg, D., Bulut, R., Commuri, S., & Pittenger, D. (2013). Develop draft chip seal cover aggregate specification based on aims angularity, shape and texture test results (No. OTCREOS11. 1-65-F).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.