100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical study of conductive heat transfer in aggregate particles using a flighted, rotary drum

, , , &
Received 11 Jul 2023, Accepted 27 Mar 2024, Published online: 18 Apr 2024

References

  • Adepu, M., Chen, S., Jiao, Y., Gel, A., & Emady, H. (2020). Wall to particle bed contact conduction heat transfer in a rotary drum using DEM. Computational Particle Mechanics, 8(3), 589–599. https://doi.org/10.1007/s40571-020-00356-z
  • Alleman, J., & Heitzman, M. (2019). Quantifying Pavement Albedo (Vols. 19–09, Issue December). https://trid.trb.org/view/1673544.
  • Aurangzeb, Q. (2014). Impact of reclaimed asphalt pavements on pavement sustainability. University of Illinois at Urbana-Champaign.
  • Bahrami, M., Culham, J. R., & Yovanovich, M. M. (2004). Modeling thermal contact resistance: A scale analysis approach. Journal of Heat Transfer, 126(6), 896–905. https://doi.org/10.1115/1.1795238
  • Bahrami, M., Yovanovich, M. M., & Culham, J. R. (2006). Effective thermal conductivity of rough spherical packed beds. International Journal of Heat and Mass Transfer, 49(19–20), 3691–3701. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.021
  • Batchelor, G. K., & O’Brien, R. W. (1977). Thermal or electrical conduction through a granular material. Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences, 355(1682), 313–333. https://doi.org/10.1098/rspa.1977.0100
  • Bluhm-Drenhaus, T., Simsek, E., Wirtz, S., Scherer, V., Bluhm-Drenhaus, T., Simsek, E., Wirtz, S., & Scherer, V. (2010). A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln. Chemical Engineering Science, 65(9), 2821–2834. https://doi.org/10.1016/j.ces.2010.01.015
  • Brock, J. D., & Jakob, H. (1998). Temperature differential damage. T-134.
  • Chaudhuri, B., Muzzio, F. J., & Tomassone, M. S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 61(19), 6348–6360. https://doi.org/10.1016/j.ces.2006.05.034
  • Chaudhuri, B., Muzzio, F. J., & Tomassone, M. S. (2010). Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technology, 198(1), 6–15. https://doi.org/10.1016/j.powtec.2009.09.024
  • Cheng, G. J., Yu, a. B., & Zulli, P. (1999). Evaluation of effective thermal conductivity from the structure of a packed bed. Chemical Engineering Science, 54, 4199–4209. https://doi.org/10.1016/S0009-2509(99)00125-6
  • Coetzee, C. J. (2017). Review: Calibration of the discrete element method. Powder Technology, 310, 104–142. https://doi.org/10.1016/j.powtec.2017.01.015
  • Copeland, A. (2011). Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice.
  • Cundall, P. A., & Strack, O. D. L. (1980). A discrete numerical model for granular assemblies. Geotechnique, 30(3), 331–336. https://doi.org/10.1680/geot.1980.30.3.331
  • EAPA. (2019). Asphalt in figures 2019. 11. https://eapa.org/asphalt-in-figures-2019-view.
  • EDEM 2. 6 Theory Reference Guide, 2014. (2014). DEM Solutions Ltd.
  • Emady, H. N., Anderson, K. V., Borghard, W. G., Muzzio, F. J., Glasser, B. J., & Cuitino, A. (2016). Prediction of conductive heating time scales of particles in a rotary drum. Chemical Engineering Science, 152, 45–54. https://doi.org/10.1016/j.ces.2016.05.022
  • Geng, A. P. W. (2016). ). Measuring the thermal properties of pavement materials A. P. Wei Geng 1,2; and Michael Heitzman, Ph.D., P.E. 3 1. 109–116.
  • Govender, N., Wilke, D. N., Wu, C., Rajamani, R., Khinast, J., & Glasser, B. J. (2018). Large-scale GPU based DEM modeling of mixing using irregularly shaped particles. Advanced Powder Technology, 29(10), 2476–2490. https://doi.org/10.1016/j.apt.2018.06.028
  • Heneash, U. (2013). Effect of the repeated recycling on hot mix asphalt properties. University of Nottingham.
  • Hertz, H. (1881). Über die Berührung fester elastischer Körper. Journal Für Die Reine Und Angewandte Mathematik, 92, 156–171.
  • Hobbs, A. M., Goodrich, R. P., & Ooi, J. Y. (2020). Numerical and experimental investigation of the effect of interstitial gases on conductive heat transfer for dense particulate systems. Thermal Science and Engineering Progress, https://doi.org/10.1016/j.tsep.2020.100765
  • Hobbs, A. M., Ooi, J. Y., Adepu, M., & Emady, H. (2022). Experimental validation of a particle-based method for heat transfer incorporating interstitial gas conduction in dense granular flow using a rotary drum. Advanced Powder Technology, 33(2), 103426. https://doi.org/10.1016/j.apt.2022.103426
  • Horvath, A. (2003). Life-Cycle Environmental and Economic Assessment of Using Recycled Materials for Asphalt Pavements.
  • Jin, X., Wang, S., & Shen, Y. (2022). DEM study of mixing behaviours of cohesive particles in a U-shaped ribbon mixer. Powder Technology, 399, 117097. https://doi.org/10.1016/j.powtec.2021.117097
  • Johnstone, M. W. (2010). Calibration of DEM models for granular materials using bulk physical tests The University of Edinburgh. In PhD Thesis (Issue June). Edinburgh University.
  • Kandhal, P. S., & Mallick, R. B. (1997). Pavement recycling guidelines for state and local governments. Report No. FHWA-SA-98-042. Fhwa, Usdot, December, 301. https://www.fhwa.dot.gov/pavement/recycling/98042/%0Ahttps://www.fhwa.dot.gov/pavement/recycling/98042/98042.pdf.
  • Komossa, H., Wirtz, S., Scherer, V., Herz, F., & Specht, E. (2015). Heat transfer in indirect heated rotary drums filled with monodisperse spheres: Comparison of experiments with DEM simulations. Powder Technology, 286. https://doi.org/10.1016/j.powtec.2015.07.022
  • Kremmer, M., & Favier, J. F. (2001a). A Method for Representing Boundaries in Discrete Element Modelling — Part I : Geometry and Contact Detection, 1421(October), 1407–1421. https://doi.org/10.1002/nme.184
  • Kremmer, M., & Favier, J. F. (2001b). A Method for Representing Boundaries in Discrete Element Modelling — Part II : Kinematics, 1436(October), 1423–1436. https://doi.org/10.1002/nme.185
  • Kunii, D., & Yagi, S. (1957). Studies on effective thermal conductivities in packed beds. A.I.Ch.E. Journal, 3, 373–381.
  • Kwapinska, M., Saage, G., & Tsotsas, E. (2008). Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technology, 181(3), 331–342. https://doi.org/10.1016/j.powtec.2007.05.025
  • Liu, P. Y., Yang, R. Y., & Yu, A. B. (2013). DEM study of the transverse mixing of wet particles in rotating drums. Chemical Engineering Science, 86, 99–107. https://doi.org/10.1016/j.ces.2012.06.015
  • Liu, S., Shukla, A., & Nandra, T. (2017). Technological, environmental and economic aspects of Asphalt recycling for road construction. Renewable and Sustainable Energy Reviews, 75(October), 879–893. https://doi.org/10.1016/j.rser.2016.10.080
  • Ma, T., Huang, X., Zhao, Y., & Zhang, Y. (2016). Influences of preheating temperature of RAP on properties of hot-mix recycled asphalt mixture. Journal of Testing and Evaluation, 44(2), 762–769.
  • Mellmann, J. (2001). The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology, 118(3), 251–270. https://doi.org/10.1016/S0032-5910(00)00402-2
  • Mikami, T., Kamiya, H., & Horio, M. (1998). Numerical simulation of cohesive powder behavior in a fluidized bed. Chemical Engineering Science, 53(10), 1927–1940. https://doi.org/10.1016/S0009-2509(97)00325-4
  • Morris, A. B., Pannala, S., Ma, Z., & Hrenya, C. M. (2015). A conductive heat transfer model for particle flows over immersed surfaces. International Journal of Heat and Mass Transfer, 89, 1277–1289. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.004
  • Nafsun, A. I., & Herz, F. (2016). Experiments on the temperature distribution in the solid bed of rotary drums. Applied Thermal Engineering, 103, 1039–1047. https://doi.org/10.1016/j.applthermaleng.2016.04.128
  • Nafsun, A. I., Herz, F., & Liu, X. (2018). Influence of material thermal properties and dispersity on thermal bed mixing in rotary drums. Powder Technology, 331, 121–128. https://doi.org/10.1016/j.powtec.2018.01.072
  • Nafsun, A. I., Herz, F., Specht, E., Komossa, H., Wirtz, S., Scherer, V., & Liu, X. (2017). Thermal bed mixing in rotary drums for different operational parameters. Chemical Engineering Science, 160, 346–353. https://doi.org/10.1016/j.ces.2016.11.005
  • Nguyen, H. V. (2013). Effects of mixing procedures and rap sizes on stiffness distribution of hot recycled asphalt mixtures. Construction and Building Materials, 47, 728–742. https://doi.org/10.1016/j.conbuildmat.2013.05.056
  • Nottingham, T., & User, N. E. (2013). Heneash, Usama (2013) Effect of the repeated recycling on hot mix asphalt properties. PhD thesis, University of Effect of the Repeated Recycling on Hot Mix Asphalt Properties By.
  • Pérez Madrigal, D., Iannone, A., Martìnez, A. H., & Giustozzi, F. (2017). Effect of mixing time and temperature on cracking resistance of bituminous mixtures containing reclaimed asphalt pavement material. Journal of Materials in Civil Engineering, 29(8), 04017058. https://doi.org/10.1061/(asce)mt.1943-5533.0001831
  • Piton, M., Huchet, F., Le Corre, O., Le Guen, L., Cazacliu, B., & Le, O. (2015). A coupled thermal-granular model in flights rotary kiln: Industrial validation and process design. Applied Thermal Engineering, 75(January), 1011–1021. https://doi.org/10.1016/j.applthermaleng.2014.10.052
  • Quist, J., & Evertsson, M. (2015). Framework for DEM Model Calibration and Validation. September, 103–108.
  • Rong, D., & Horio, M. (1999). DEM simulation of char combustion in a fluidized bed. Second International Conference on CFD in the Minerals and Process Industries, December, 65–70. http://www.cfd.com.au/cfd_conf99/Conf99_Papers/016RONG.PDF.
  • Schmelzle, S., & Nirschl, H. (2018). DEM simulations: Mixing of dry and wet granular material with different contact angles. Granular Matter, 20(2), https://doi.org/10.1007/s10035-018-0792-3
  • Seidenbecher, J., Herz, F., Meitzner, C., Specht, E., Wirtz, S., Scherer, V., & Liu, X. (2021). Temperature analysis in flighted rotary drums and the influence of operating parameters. Chemical Engineering Science, 229, 115972. https://doi.org/10.1016/j.ces.2020.115972
  • Soltanbeigi, B., Podlozhnyuk, A., Kloss, C., Pirker, S., Ooi, J. Y., & Papanicolopulos, S. A. (2021). Influence of various DEM shape representation methods on packing and shearing of granular assemblies. Granular Matter, 23(2), 1–16. https://doi.org/10.1007/s10035-020-01078-y
  • Sousani, M., Hobbs, A. M., Anderson, A., & Wood, R. (2019). Accelerated heat transfer simulations using coupled CFD and DEM. Powder Technology, 357, 367–376. https://doi.org/10.1016/j.powtec.2019.08.095
  • Sunkara, K. R., Herz, F., Specht, E., Mellmann, J., & Erpelding, R. (2013). Modeling the discharge characteristics of rectangular flights in a flighted rotary drum. Powder Technology, 234, 107–116. https://doi.org/10.1016/j.powtec.2012.09.007
  • Tran, T. T. T., Nguyen, H. H., Pham, P. N., Nguyen, T., Nguyen, P. Q., & Huynh, H. N. (2023). Temperature-related thermal properties of paving materials: Experimental analysis and effect on thermal distribution in semi-rigid pavement. Road Materials and Pavement Design, 24(11), 2759–2779. https://doi.org/10.1080/14680629.2023.2170270
  • Tsory, T., Ben-Jacob, N., Brosh, T., & Levy, A. (2013). Thermal DEM-CFD modeling and simulation of heat transfer through packed bed. Powder Technology, 244, 52–60. https://doi.org/10.1016/j.powtec.2013.04.013
  • Tsotsas, E. (2019). Particle-particle heat transfer in thermal DEM: Three competing models and a new equation. International Journal of Heat and Mass Transfer, 132, 939–943. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.090
  • Wen, H., & Zhang, K. (2015). Coupling discrete-element method and computation fluid mechanics to simulate aggregates heating in asphalt plants. Journal of Engineering Mechanics, 141(3), 04014129. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000853
  • Wen, H., Zhang, K., Hobbs, A. M., & Edburg, S. L. (2014). Simulation of drying aggregate in asphalt plants. Asphalt pavements - proceedings of the international conference on asphalt pavements. ISAP, 2014(1), 963–970. https://doi.org/10.1201/b17219-118
  • Xiao, X., Tan, Y., Zhang, H., Jiang, S., Wang, J., Deng, R., Cao, G., & Wu, B. (2015). Numerical investigation on the effect of the particle feeding order on the degree of mixing using DEM. Procedia Engineering, 102, 1850–1856. https://doi.org/10.1016/j.proeng.2015.01.323
  • Xu, S., Wang, K., Wayira, A., & Lu, J. (2003). Chapter 18-influence of binder properties on the performance of asphalts. In The shell bitumen handbook (6th ed.). https://doi.org/10.1680/tsbh.58378.503
  • Yan, X., Chen, L., You, Q., & Fu, Q. (2019). Experimental analysis of thermal conductivity of semi-rigid base asphalt pavement. Road Materials and Pavement Design, 20(5), 1215–1227. https://doi.org/10.1080/14680629.2018.1431147
  • Yohannes, B., Emady, H., Anderson, K., Paredes, I., Javed, M., Borghard, W., Muzzio, F. J., Glasser, B. J., & Cuitino, A. M. (2016). Scaling of heat transfer and temperature distribution in granular flows in rotating drums. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, 94(4), 1–5. https://doi.org/10.1103/PhysRevE.94.042902
  • Zhang, K. (2016). Numerical and experimental investigatinosn of production and blending mechanisms of asphalt mixtures with reclaimed asphalt pavement (Issue July). Washington State University.
  • Zhang, K., Huchet, F., & Hobbs, A. M. (2019). A review of thermal processes in the production and their influences on performance of asphalt mixtures with reclaimed asphalt pavement (RAP). Construction and Building Materials, 206, 609–619. https://doi.org/10.1016/j.conbuildmat.2019.02.057
  • Zhang, K., Wen, H., & Hobbs, A. M. (2015). Laboratory tests and numerical simulations of mixing superheated virgin aggregate with reclaimed asphalt pavement materials. Transportation Research Record, 2506, 62–71. https://doi.org/10.3141/2506-07
  • Zhang, L., Jiang, Z., Mellmann, J., Weigler, F., Herz, F., Bück, A., & Tsotsas, E. (2021). Influence of the number of flights on the dilute phase ratio in flighted rotating drums by PTV measurements and DEM simulations. Particuology, 56, 171–182. https://doi.org/10.1016/j.partic.2020.09.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.