150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exciting turbulence in an elongated domain

, , &
Pages 1-15 | Received 15 May 2023, Accepted 18 Dec 2023, Published online: 08 Jan 2024

References

  • Simmons LFG, Salter C. Experimental investigation and analysis of the velocity variations in turbulent flow. Proc R Soc Lond Ser A Contain Pap Math Phys Character. 1934;145(854):212–234.
  • Batchelor GK. The theory of homogeneous turbulence. London: Cambridge University Press; 1953.
  • Comte-Bellot G, Corrsin S. The use of contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech. 1966;25:657–682. doi: 10.1017/S0022112066000338
  • Mohamed MS, LaRue JC. The decay power law in grid-generated turbulence. J Fluid Mech. 1990;219:195–214. doi: 10.1017/S0022112090002919
  • Makita H. Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res. 1991;8(1–4):53–64.
  • Mydlarski L. A turbulent quarter century of active grids: from Makita (1991) to the present. Fluid Dyn Res. 2017;49(6):Article ID 061401. doi: 10.1088/1873-7005/aa7786
  • Mydlarski L, Warhaft Z. On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech. 1996;320:331–368. doi: 10.1017/S0022112096007562
  • Hearst RJ, Lavoie P. The effect of active grid initial conditions on high Reynolds number turbulence. Exp Fluids. 2015;56:1–20. doi: 10.1007/s00348-014-1876-4
  • Griffin KP, Wei NJ, Bodenschatz E, et al. Control of long-range correlations in turbulence. Exp Fluids. 2019;60:1–14. doi: 10.1007/s00348-019-2698-1
  • Neuhaus L, Holling M, Bos WJT, et al. Generation of atmospheric turbulence with unprecedentedly large reynolds number in a wind tunnel. Phys Rev Lett. 2020;125(15):Article ID 154503. doi: 10.1103/PhysRevLett.125.154503
  • Chevillard L, Castaing B, Lévêque E, et al. Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness. Phys D. 2006;218:77–82. doi: 10.1016/j.physd.2006.04.011
  • Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Cr Acad Sci URSS. 1941;30:301–305.
  • Kolmogorov AN. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech. 1962;13:82–85. doi: 10.1017/S0022112062000518
  • Frisch U. Turbulence, the legacy of a.n. kolmogorov. Cambridge: Cambridge University Press; 1995.
  • She ZS, Leveque E. Universal scaling laws in fully developed turbulence. Phys Rev Lett. 1994;72:336–339. doi: 10.1103/PhysRevLett.72.336
  • Dubrulle B. Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance. Phys Rev Lett. 1994;73(7):959–962. doi: 10.1103/PhysRevLett.73.959
  • Meneveau C, Sreenivasan KR. The multifractal nature of turbulent energy dissipation. J Fluid Mech. 1991;224:429–484. doi: 10.1017/S0022112091001830
  • Friedrich R, Peinke J. Description of a turbulent cascade by a Fokker-Planck equation. Phys Rev Lett. 1997;78(5):863–866. doi: 10.1103/PhysRevLett.78.863
  • Cekli HE, Joosten R, van de Water W. Stirring turbulence with turbulence. Phys Fluids. 2015;27(12):Article ID 125107. doi: 10.1063/1.4937427
  • Poorte REG, Biesheuvel A. Experiments on the motion of gas bubbles in turbulence generated by an active grid. J Fluid Mech. 2002;461:127–154. doi: 10.1017/S0022112002008273
  • Avila M, Barkley D, Hof B. Transition to turbulence in pipe flow. Annu Rev Fluid Mech. 2023;55:575–602. doi: 10.1146/fluid.2023.55.issue-1
  • Moin P, Kim J. Numerical investigation of turbulent channel flow. J Fluid Mech. 1982;118:341–377. doi: 10.1017/S0022112082001116
  • Del Alamo JC, Jiménez J. Spectra of the very large anisotropic scales in turbulent channels. Phys Fluids. 2003;15(6):L41–L44. doi: 10.1063/1.1570830
  • Kim KC, Adrian RJ. Very large-scale motion in the outer layer. Phys Fluids. 1999;11(2):417–422. doi: 10.1063/1.869889
  • Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech. 2007;579:1–28. doi: 10.1017/S0022112006003946
  • Zhai XM, Yeung PK. Evolution of anisotropy in direct numerical simulations of MHD turbulence in a strong magnetic field on elongated periodic domains. Phys Rev Fluids. 2018;3(8):Article ID 084602. doi: 10.1103/PhysRevFluids.3.084602
  • TenBarge JM, Howes GG, Dorland W, et al. An oscillating Langevin antenna for driving plasma turbulence simulations. Comput Phys Commun. 2014;185(2):578–589. doi: 10.1016/j.cpc.2013.10.022
  • Dhandapani C, Blanquart G. From isotropic turbulence in triply periodic cubic domains to sheared turbulence with inflow/outflow. Phys Rev Fluids. 2020;5(12):Article ID 124605. doi: 10.1103/PhysRevFluids.5.124605
  • Pestana T, Hickel S. Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence. J Fluid Mech. 2020;885:A7. doi: 10.1017/jfm.2019.976
  • van Kan A, Alexakis A. Critical transition in fast-rotating turbulence within highly elongated domains. J Fluid Mech. 2020;899:A33. doi: 10.1017/jfm.2020.443
  • van Kan A, Alexakis A. Energy cascades in rapidly rotating and stratified turbulence within elongated domains. J Fluid Mech. 2022;933:A11. doi: 10.1017/jfm.2021.1083
  • Delache A, Cambon C, Godeferd F. Scale by scale anisotropy in freely decaying rotating turbulence. Phys Fluids. 2014;26(2):Article ID 025104. doi: 10.1063/1.4864099
  • Alvelius K. Random forcing of three-dimensional homogeneous turbulence. Phys Fluids. 1999;11:1880–1889. doi: 10.1063/1.870050
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Waleffe F. The nature of triad interactions in homogeneous turbulence. Phys Fluids A Fluid Dyn. 1992;4(2):350–363. doi: 10.1063/1.858309
  • Hill RJ. Scaling of acceleration in locally isotropic turbulence. J Fluid Mech. 2002;452:361.370 doi: 10.1017/S0022112001007091
  • Gylfason A, Ayyalasomayajula S, Warhaft Z. Intermittency, pressure and acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J Fluid Mech. 2004;501:213–229. doi: 10.1017/S002211200300747X
  • Ishihara T, Kaneda Y, Yokokawa M, et al. Small–scale statistics in high–resolution direct numerical simulation of turbulence: Reynolds number dependence of one–point velocity gradient. J Fluid Mech. 2007;592:335–366. doi: 10.1017/S0022112007008531
  • Biferale L, Procaccia I. Anisotropy in turbulent flows and in turbulent transport. Phys Rep. 2005;414(2–3):43–164. doi: 10.1016/j.physrep.2005.04.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.