204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spectral energy transfer analysis of a forced homogeneous isotropic turbulence using triple decomposition of velocity gradient tensor

ORCID Icon & ORCID Icon
Pages 125-143 | Received 06 Nov 2023, Accepted 08 Mar 2024, Published online: 22 Mar 2024

References

  • Falkovich G. Topical review: symmetries of the turbulent state. J Phys A: Math Theor. 2009;42(12):123001. doi: 10.1088/1751-8113/42/12/123001
  • Tsinober A. An informal conceptual introduction to turbulence. Dordrecht, Netherlands: Springer; 2009.
  • Tennekes H, Lumley JL, et al. A first course in turbulence. Cambridge, Massachusetts: MIT Press; 1972.
  • Aluie H, Eyink GL. Localness of energy cascade in hydrodynamic turbulence. ii. sharp spectral filter. Phys Fluids. 2009;21(11):115108. doi: 10.1063/1.3266948
  • Domaradzki JA, Carati D. An analysis of the energy transfer and the locality of nonlinear interactions in turbulence. Phys Fluids. 2007;19(8):085112. doi: 10.1063/1.2772248
  • Domaradzki JA, Teaca B, Carati D. Locality properties of the energy flux in turbulence. Phys Fluids. 2009;21(2):025106. doi: 10.1063/1.3081558
  • Eyink GL. Local energy flux and the refined similarity hypothesis. J Stat Phys. 1995;78(1):335–351. doi: 10.1007/BF02183352
  • Eyink GL. Locality of turbulent cascades. Phys D Nonlinear Phenomena. 2005;207(1-2):91–116. doi: 10.1016/j.physd.2005.05.018
  • Eyink GL, Aluie H. Localness of energy cascade in hydrodynamic turbulence. i. smooth coarse graining. Phys Fluids. 2009;21(11):115107. doi: 10.1063/1.3266883
  • Kraichnan RH. Isotropic turbulence and inertial-range structure. Phys Fluids. 1966;9(9):1728–1752. doi: 10.1063/1.1761928
  • Kraichnan RH. Inertial-range transfer in two-and three-dimensional turbulence. J Fluid Mech. 1971;47(3):525–535. doi: 10.1017/S0022112071001216
  • Zhou Y. Degrees of locality of energy transfer in the inertial range. Phys Fluids A: Fluid Dyn. 1993a;5(5):1092–1094. doi: 10.1063/1.858593
  • Zhou Y. Interacting scales and energy transfer in isotropic turbulence. Phys Fluids A: Fluid Dyn. 1993b;5(10):2511–2524. doi: 10.1063/1.858764
  • Verma MK. Energy transfers in fluid flows: multiscale and spectral perspectives. Cambridge, England: Cambridge University Press; 2019.
  • Wu J-Z, Zhou M-D. Vorticity and vortex dynamics. Berlin Heidelberg, Germany: Springer-Verlag; 2007.
  • Alexakis A. Helically decomposed turbulence. J Fluid Mech. 2017;812:752–770. doi: 10.1017/jfm.2016.831
  • Biferale L, Musacchio S, Toschi F. Inverse energy cascade in three-dimensional isotropic turbulence. Phys Rev Lett. 2012;108:164501. doi: 10.1103/PhysRevLett.108.164501
  • Biferale L, Musacchio S, Toschi F. Split energy-helicity cascades in three-dimensional homogeneous and isotropic turbulence. J Fluid Mech. 2013;730:309–327. doi: 10.1017/jfm.2013.349
  • Waleffe F. The nature of triad interactions in homogeneous turbulence. Phys Fluids A: Fluid Dyn. 1992;4(2):350–363. doi: 10.1063/1.858309
  • Alexakis A, Biferale L. Cascades and transitions in turbulent flows. Phys Rep. 2018;767-769:1–101. doi: 10.1016/j.physrep.2018.08.001
  • McKeown R, Ostilla-Monico R, Pumir A, et al. Turbulence generation through an iterative cascade of the elliptical instability. Sci Adv. 2020;6(9):eaaz2717. doi: 10.1126/sciadv.aaz2717
  • Germano M. Turbulence: the filtering approach. J Fluid Mech. 1992;238:325–336. doi: 10.1017/S0022112092001733
  • Eyink GL. Multi-scale gradient expansion of the turbulent stress tensor. J Fluid Mech. 2006b;549:159–190. doi: 10.1017/S0022112005007895
  • Eyink GL. Cascade of circulations in fluid turbulence. Phys Rev E. 2006a;74(6):066302. doi: 10.1103/PhysRevE.74.066302
  • Davidson PA. Turbulence: an introduction for scientists and engineers: an introduction for scientists and engineers. Oxford: Oxford University Press; 2004.
  • Betchov R. An inequality concerning the production of vorticity in isotropic turbulence. J Fluid Mech. 1956;1(5):497–504. doi: 10.1017/S0022112056000317
  • Carbone M, Bragg AD. Is vortex stretching the main cause of the turbulent energy cascade? J Fluid Mech. 2020;883:R2. doi: 10.1017/jfm.2019.923.
  • Doan NAK, Swaminathan N, Davidson P, et al. Scale locality of the energy cascade using real space quantities. Phys Rev Fluids. 2018;3(8):084601. doi: 10.1103/PhysRevFluids.3.084601
  • Johnson PL. Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys Rev Lett. 2020;124(10):104501. doi: 10.1103/PhysRevLett.124.104501
  • Johnson PL. On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J Fluid Mech. 2021;922:A3. doi: 10.1017/jfm.2021.490.
  • Das R, Girimaji SS. Revisiting turbulence small-scale behavior using velocity gradient triple decomposition. New J Phys. 2020;22(6):063015. doi: 10.1088/1367-2630/ab8ab2
  • Gao Y, Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria. Phys Fluids. 2018;30(8):085107. doi: 10.1063/1.5040112
  • Gao Y, Liu C. Rortex based velocity gradient tensor decomposition. Phys Fluids. 2019;31(1):011704. doi: 10.1063/1.5084739
  • Kolář V. Vortex identification: new requirements and limitations. Int J Heat Fluid Flow. 2007;28(4):638–652. doi: 10.1016/j.ijheatfluidflow.2007.03.004
  • Liu C, Gao Y, Tian S, et al. Rortex-a new vortex vector definition and vorticity tensor and vector decompositions. Phys Fluids. 2018;30(3):035103. doi: 10.1063/1.5023001
  • Liu C, Yu Y, Gao Y. Principal decomposition of velocity gradient tensor in the cartesian coordinates. preprint, 2021. arXiv:2106.10564.
  • Nagata R, Watanabe T, Nagata K, et al. Triple decomposition of velocity gradient tensor in homogeneous isotropic turbulence. Comput Fluids. 2020;198:104389. doi: 10.1016/j.compfluid.2019.104389
  • Wang Y, Gao Y, Liu C. Galilean invariance of rortex. Phys Fluids. 2018;30(11):111701. doi: 10.1063/1.5058939
  • Hoffman J. Energy stability analysis of turbulent incompressible flow based on the triple decomposition of the velocity gradient tensor. Phys Fluids. 2021;33(8):081707. doi: 10.1063/5.0060584
  • Wu Y, Zhang W, Wang Y, et al. Energy dissipation analysis based on velocity gradient tensor decomposition. Phys Fluids. 2020;32(3):035114. doi: 10.1063/1.5144424
  • Charbonneau P. Genetic algorithms in astronomy and astrophysics. Astrophys J Suppl Ser. 1995;101:309. doi: 10.1086/192242
  • Alexakis A, Mininni PD, Pouquet A. Shell-to-shell energy transfer in magnetohydrodynamics. i. steady state turbulence. Phys Rev E. 2005;72(4):046301. doi: 10.1103/PhysRevE.72.046301
  • Debliquy O, Verma MK, Carati D. Energy fluxes and shell-to-shell transfers in three-dimensional decaying magnetohydrodynamic turbulence. Phys Plasmas. 2005;12(4):042309. doi: 10.1063/1.1867996
  • Mininni PD, Alexakis A, Pouquet A. Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys Rev E. 2006;74:016303. doi: 10.1103/PhysRevE.74.016303
  • Frisch U, Kolmogorov AN. Turbulence: the legacy of AN Kolmogorov. Cambridge: Cambridge University Press; 1995.
  • Tian S, Gao Y, Dong X, et al. Definitions of vortex vector and vortex. J Fluid Mech. 2018;849:312–339. doi: 10.1017/jfm.2018.406
  • Moffatt K, Dormy E. Self-exciting fluid dynamos. Cambridge: Cambridge University Press; 2019.
  • Li Y, Perlman E, Wan M, et al. A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J Turbul. 2008;9:N31. doi: 10.1080/14685240802376389
  • Minping W, Chen S, Eyink G, et al. Forced isotropic turbulence data set (extended). 2012. .doi: 10.7281/T1KK98XB
  • Perlman E, Burns R, Li Y. Data exploration of turbulence simulations using a database cluster..Reno, NV, USA, SC '07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. 2007. pp. 1–11. doi: 10.1145/1362622.1362654
  • Gulitski G, Kholmyansky M, Kinzelbach W, et al. Velocity and temperature derivatives in high-reynolds-number turbulent flows in the atmospheric surface layer. part 1. facilities, methods and some general results. J Fluid Mech. 2007;589:57–81. doi: 10.1017/S0022112007007495
  • Ballouz JG, Ouellette NT. Tensor geometry in the turbulent cascade. J Fluid Mech. 2018;835:1048–1064. doi: 10.1017/jfm.2017.802
  • Thurner S, Hanel R, Klimek P. Introduction to the theory of complex systems. Oxford: Oxford University Press; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.