160
Views
0
CrossRef citations to date
0
Altmetric
Review

How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome?

, , &
Pages 883-899 | Received 30 May 2023, Accepted 03 Aug 2023, Published online: 20 Aug 2023

References

  • Lee BB, Cripps RA, Fitzharris M, et al. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52(2):110–116. doi: 10.1038/sc.2012.158
  • National Spinal Cord Injury Statistical Center (NSCIS), University of Alabama at Birmingham. Spinal cord injury facts and figures at a glance (2022). [Internet]. Available from: https://www.nscisc.uab.edu/public/Facts%20and%20Figures%202022%20-%20English%20Final.pdf.
  • Chiu W-T, Lin H-C, Lam C, et al. Review paper: epidemiology of traumatic spinal cord injury: comparisons between developed and developing countries. Asia Pac J Public Health. 2010;22(1):9–18. doi: 10.1177/1010539509355470
  • Hejrati N, Moghaddamjou A, Pedro K, et al. Current practice of acute spinal cord injury management: a global survey of members from the AO spine. Global Spine J. 2022;21925682221116890:219256822211168. doi: 10.1177/21925682221116888
  • Hejrati N, Rocos B, Fehlings MG. Controversies in cervical spine trauma: the role of timing of surgical decompression and the use of methylprednisolone sodium succinate in spinal cord injury. A narrative and updated systematic review. Indian Spine J. 2022;5(1):47. doi: 10.4103/ISJ.ISJ_26_21
  • Badhiwala JH, Wilson JR, Witiw CD, et al. The influence of timing of surgical decompression for acute spinal cord injury: a pooled analysis of individual patient data. Lancet Neurol. 2021;20(2):117–126. doi: 10.1016/S1474-4422(20)30406-3
  • Hejrati N, Fehlings MG. A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol. 2021;60:331–340. doi: 10.1016/j.coph.2021.08.009
  • Hejrati N, McIntyre WB, Pieczonka K, et al.et al. Chapter 31 - translational research in spinal cord injury – what is in the future? In: Fehlings M, Kwon B Vaccaro A, editors. Neural repair and regeneration after spinal cord injury and spine trauma [internet]. Academic Press; 2022 [cited 2022 Jul 25]. p. 587–602. Available from; https://www.sciencedirect.com/science/article/pii/B9780128198353000137.
  • Ahuja CS, Mothe A, Khazaei M, et al. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med. 2020;9(12):1509–1530. doi: 10.1002/sctm.19-0135
  • Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):637–647. doi: 10.1038/nn.4541
  • Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol. 2022;21(7):659–670. doi: 10.1016/S1474-4422(21)00464-6
  • Moore TJ, Heyward J, Anderson G, et al. Variation in the estimated costs of pivotal clinical benefit trials supporting the US approval of new therapeutic agents, 2015–2017: a cross-sectional study. BMJ Open. 2020;10(6):e038863. doi: 10.1136/bmjopen-2020-038863
  • Broder MS, Quock TP, Chang E, et al. The cost of hematopoietic stem-cell transplantation in the United States. Am Health Drug Benefits. 2017;10:366–374.
  • Betz R, Biering-Sørensen F, Burns SP, et al. The 2019 revision of the international standards for neurological classification of spinal cord injury (ISNCSCI)—what’s new? Spinal Cord. 2019;57:815–817.
  • Kirshblum S, Snider B, Eren F, et al. Characterizing natural recovery after traumatic spinal cord injury. J Neurotrauma. 2021;38(9):1267–1284. doi: 10.1089/neu.2020.7473
  • Badhiwala JH, Wilson JR, Kulkarni AV, et al. A novel method to classify cervical incomplete spinal cord injury based on potential for recovery: a group-based trajectory analysis. J Neurotrauma. 2022;39(23–24):1654–1664. doi: 10.1089/neu.2022.0145
  • Fehlings MG, Pedro K, Hejrati N. The management of acute spinal cord injury: where have we been? Where are we now? Where are we going? J Neurotrauma. [cited 2022 Jul 25] 2022;39(23–24):1591–1602. InternetAvailable from: https://www.liebertpub.com/doi/abs/10.1089/neu.2022.0009.
  • van der Weijden CWJ, García DV, Borra RJH, et al. Myelin quantification with MRI: A systematic review of accuracy and reproducibility. Neuroimage. 2021;226:117561. doi: 10.1016/j.neuroimage.2020.117561
  • Dell’anno MT, Wang X, Onorati M, et al. Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit. Nat Commun. 2018;9(1):3419. doi: 10.1038/s41467-018-05844-8
  • Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22(5):479–487. doi: 10.1038/nm.4066
  • Kajikawa K, Imaizumi K, Shinozaki M, et al. Cell therapy for spinal cord injury by using human Ipsc-derived region-specific neural progenitor cells. Mol Brain. 2020;13(1):120. doi: 10.1186/s13041-020-00662-w
  • Tao Y, Zhang S-C. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell. 2016;19(5):573–586. doi: 10.1016/j.stem.2016.10.015
  • Wu P, Tarasenko YI, Gu Y, et al. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci. 2002;5(12):1271–1278. doi: 10.1038/nn974
  • Zholudeva LV, Iyer N, Qiang L, et al. Transplantation of neural progenitors and v2a interneurons after spinal cord injury. J Neurotrauma. 2018;35(24):2883–2903. doi: 10.1089/neu.2017.5439
  • Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28(8):1611–1682. doi: 10.1089/neu.2009.1177
  • Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells. 2014;6(2):120–133. doi: 10.4252/wjsc.v6.i2.120
  • Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980;284(5753):264–265. doi: 10.1038/284264a0
  • Boyd JG, Skihar V, Kawaja M, et al. Olfactory ensheathing cells: Historical perspective and therapeutic potential. The anatomical record part B. Anat Rec. 2003;271B(1):49–60. doi: 10.1002/ar.b.10011
  • Mackay-Sim A, Féron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(9):2376–2386. doi: 10.1093/brain/awn173
  • Mothe AJ, Zahir T, Santaguida C, et al. Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PLoS One. 2011;6(11):e27079. doi: 10.1371/journal.pone.0027079
  • Rustenhoven J, Park T-H, Schweder P, et al. Isolation of highly enriched primary human microglia for functional studies. Sci Rep. 2016;6(1):19371. doi: 10.1038/srep19371
  • Chaddah R, Arntfield M, Runciman S, et al. Clonal Neural Stem Cells from Human Embryonic Stem Cell Colonies. J Neurosci. 2012;32(23):7771–7781. doi: 10.1523/JNEUROSCI.3286-11.2012
  • Umebayashi D, Coles B, van der Kooy D. Enrichment of oligodendrocyte progenitors from differentiated neural precursors by clonal sphere preparations. Stem Cells Dev. 2016;25(9):712–728. doi: 10.1089/scd.2015.0244
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
  • Khazaei M, Ahuja CS, Fehlings MG. Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol. 2017 [[cited 2023 Mar 12]];4. InternetAvailable from: https://www.frontiersin.org/articles/10.3389/fcell.2016.00152.
  • Khazaei M, Ahuja CS, Fehlings MG. Generation of oligodendrogenic spinal neural progenitor cells from human induced pluripotent stem cells. Curr Protoc Stem Cell Biol. 2017;42(1):D.2.20.1–D.2.20.14. doi: 10.1002/cpsc.31
  • Khazaei M, Ahuja CS, Rodgers CE, et al. Generation of definitive neural progenitor cells from human pluripotent stem cells for transplantation into spinal cord injury. Methods Mol Biol. 2019;1919:25–41.
  • Nagoshi N, Okano H, Nakamura M. Regenerative therapy for spinal cord injury using iPSC technology. Inflamm Regen. 2020;40(1):40. doi: 10.1186/s41232-020-00149-0
  • Silvestro S, Bramanti P, Trubiani O, et al. Stem cells therapy for spinal cord injury: an overview of clinical trials. Int J Mol Sci. 2020;21(2):659. doi: 10.3390/ijms21020659
  • Ribeiro BF, da Cruz BC, de Sousa BM, et al. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain. 2023;146(7):2672–2693. doi: 10.1093/brain/awad047
  • Yamazaki K, Kawabori M, Seki T, et al. Clinical trials of stem cell treatment for spinal cord injury. Int J Mol Sci. 2020;21(11):3994. doi: 10.3390/ijms21113994
  • Goodman BS, Posecion LWF, Mallempati S, et al. Complications and pitfalls of lumbar interlaminar and transforaminal epidural injections. Curr Rev Musculoskelet Med. 2008;1(3–4):212–222. doi: 10.1007/s12178-008-9035-2
  • Manabe N, Shimizu T, Tanouchi T, et al. A novel skull clamp positioning system and technique for posterior cervical surgery. Medicine (Baltimore). 2015;94(17):e695. doi: 10.1097/MD.0000000000000695
  • Khoramnia R, Yildirim TM, Weindler J, et al. Preloaded injectors used in a clinical study: videographic assessment and laboratory analysis of injector nozzle damage. J Cataract Refract Surg. 2021;47(10):1338. doi: 10.1097/j.jcrs.0000000000000587
  • D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg. 2019;6:9–23. doi: 10.2147/RSRR.S190720
  • Chio JCT, Punjani N, Hejrati N, et al. Extracellular matrix and oxidative stress following traumatic spinal cord injury: physiological and pathophysiological roles and opportunities for therapeutic intervention. Antioxid Redox Signaling. 2022;37(1–3):184–207. doi: 10.1089/ars.2021.0120
  • Hou Y, Liu X, Guo Y, et al. Strategies for effective neural circuit reconstruction after spinal cord injury: use of stem cells and biomaterials. World Neurosurg. 2022;161:82–89. doi: 10.1016/j.wneu.2022.02.012
  • Papa S, Pizzetti F, Perale G, et al. Regenerative medicine for spinal cord injury: focus on stem cells and biomaterials. Expert Opin Biol Ther. 2020;20(10):1203–1213. doi: 10.1080/14712598.2020.1770725
  • Kolosnjaj-Tabi J, Wilhelm C, Clément O, et al. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnol. 2013;11(S1):S7. doi: 10.1186/1477-3155-11-S1-S7
  • Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells. 2018;10(5):43–56. doi: 10.4252/wjsc.v10.i5.43
  • Khaddour K, Hana CK, Mewawalla P Hematopoietic Stem Cell Transplantation. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Apr 24]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK536951/.
  • Lavorato A, Raimondo S, Boido M, et al. Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: systematic review. Int J Mol Sci. 2021;22(2):572. doi: 10.3390/ijms22020572
  • Paul C, Samdani AF, Betz RR, et al. Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methodsVol. 34. Philadephia, United States: Spine (Phila Pa 1976); 2009p. 328–334.
  • Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 2019;28(7):801–812. doi: 10.1177/0963689719837897
  • Baldari S, Di Rocco G, Piccoli M, et al. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017;18(10):2087. doi: 10.3390/ijms18102087
  • Lavoie NS, Truong V, Malone D, et al. Human induced pluripotent stem cells integrate, create synapses and extend long axons after spinal cord injury. J Cell Mol Med. 2022;26(7):1932–1942. doi: 10.1111/jcmm.17217
  • Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int. 2013;2013:786475. doi: 10.1155/2013/786475
  • Muheremu A, Shu L, Liang J, et al. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci. 2021;12(1):494–511. doi: 10.1515/tnsci-2020-0200
  • Ericson T, Singla P, Kohan L. Intrathecal pumps. Phys Med Rehabil Clin N Am. 2022;33(2):409–424. doi: 10.1016/j.pmr.2022.01.004
  • Salehi MS, Safari A, Pandamooz S, et al. The beneficial potential of genetically modified stem cells in the treatment of stroke: a review. Stem Cell Rev And Rep. 2022;18(2):412–440. doi: 10.1007/s12015-021-10175-1
  • Khazaei M, Ahuja CS, Nakashima H, et al. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents. Sci Transl Med. 2020;12(525):eaau3538. doi: 10.1126/scitranslmed.aau3538
  • JI W, ZHANG X, JI L, et al. Effects of brain-derived neurotrophic factor and neurotrophin-3 on the neuronal differentiation of rat adipose-derived stem cells. Mol Med Rep. 2015;12(4):4981–4988. doi: 10.3892/mmr.2015.4099
  • Howard D, Buttery LD, Shakesheff KM, et al. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66–72. doi: 10.1111/j.1469-7580.2008.00878.x
  • Yang T, Dai Y, Chen G, et al. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front Cell Neurosci. 2020;14:78. doi: 10.3389/fncel.2020.00078
  • Qian K, Xu T-Y, Wang X, et al. Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries: a meta-analysis. Neural Regen Res. 2019;15(4):748–758. doi: 10.4103/1673-5374.266915
  • Facts and figures 2020.Pdf [Internet]. [cited 2022 Dec 19]. Available from: https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%202020.pdf.
  • Bradbury EJ, Moon LDF, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636–640. doi: 10.1038/416636a
  • Takiguchi M, Miyashita K, Yamazaki K, et al. Chondroitinase ABC administration facilitates serotonergic innervation of motoneurons in rats with complete spinal cord transection. Front Integr Neurosci. 2022;16:881632. doi: 10.3389/fnint.2022.881632
  • Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp Neurol. 2018;302:196–204. doi: 10.1016/j.expneurol.2018.01.014
  • Lang B, Cregg J, DePaul M, et al. Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury. Nature. 2015;518(7539):404–408. doi: 10.1038/nature13974
  • Damasceno PKF, de Santana TA, Santos GC, et al. Genetic engineering as a strategy to improve the therapeutic efficacy of mesenchymal stem/stromal cells in regenerative medicine. Front Cell Dev Biol. 2020; [[cited 2023 Apr 24]]. 8. InternetAvailable from: https://www.frontiersin.org/articles/10.3389/fcell.2020.00737
  • Suzuki H, Imajo Y, Funaba M, et al. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury. Int J Mol Sci. 2023;24(3):2528. doi: 10.3390/ijms24032528
  • Brown N. INSPIRE neuro-spinal ScaffoldTM: an implantable alternative to stem-cell therapy for endogenous repair in spinal cord injury. J Korean Neurosurg Soc. 2020;63:671–672. doi: 10.3340/jkns.2020.0003
  • Kim KD, Lee KS, Coric D, et al. Acute Implantation of a bioresorbable polymer scaffold in patients with complete thoracic spinal cord injury: 24-month follow-up from the INSPIRE study. Neurosurgery. 2022;90(6):668–675. doi: 10.1227/neu.0000000000001932
  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006;26(13):3377–3389. doi: 10.1523/JNEUROSCI.4184-05.2006
  • Mothe AJ, Tam RY, Zahir T, et al. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials. 2013;34(15):3775–3783. doi: 10.1016/j.biomaterials.2013.02.002
  • Johnson PJ, Parker SR, Sakiyama-Elbert SE. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A. 2010;92(1):152–163. doi: 10.1002/jbm.a.32343
  • Liu Y, Ye H, Satkunendrarajah K, et al. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Acta Biomater. 2013;9(9):8075–8088. doi: 10.1016/j.actbio.2013.06.001
  • Barrow M, Taylor A, Murray P, et al. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem Soc Rev. 2015;44(19):6733–6748. doi: 10.1039/C5CS00331H
  • Ngen EJ, Wang L, Kato Y, et al. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci Rep. 2015;5(1):13628. doi: 10.1038/srep13628
  • Kraitchman DL, Bulte JWM. Imaging of stem cells using MRI. Basic Res Cardiol. 2008;103(2):105–113. doi: 10.1007/s00395-008-0704-5
  • Küstermann E, Himmelreich U, Kandal K, et al. Efficient stem cell labeling for MRI studies. Contrast Media Mol Imaging. 2008;3(1):27–37. doi: 10.1002/cmmi.229
  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019 [[cited 2023 Jul 12]];10. InternetAvailable from https://www.frontiersin.org/articles/10.3389/fneur.2019.00282
  • Pahwa R, Goyal A, Jialal I Chronic inflammation. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Jul 14]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK493173/.
  • Adegeest CY, van Gent JAN, Stolwijk-Swüste JM, et al. Influence of severity and level of injury on the occurrence of complications during the subacute and chronic stage of traumatic spinal cord injury: a systematic review. J Neurosurg Spine. 2022;36(4):632–652. doi: 10.3171/2021.7.SPINE21537
  • Tashiro S, Nakamura M, Okano H. Regenerative rehabilitation and stem cell therapy targeting chronic spinal cord injury: a review of preclinical studies. Cells. 2022;11(4):685. doi: 10.3390/cells11040685
  • Fan X-L, Zhang Y, Li X, et al. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci. 2020;77(14):2771–2794. doi: 10.1007/s00018-020-03454-6
  • Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24–33. doi: 10.5312/wjo.v6.i1.24
  • Clifford T, Finkel Z, Rodriguez B, et al. Current advancements in spinal cord injury research—glial scar formation and neural regeneration. Cells. 2023;12(6):853. doi: 10.3390/cells12060853
  • Li Z, Yu S, Hu X, et al. Fibrotic scar after spinal cord injury: crosstalk with other cells, cellular origin, function, and mechanism. Front Cell Neurosci. 2021; [[cited 2023 Jul 12]]. 15. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2021.720938
  • Moreau A, Varey E, Anegon I, et al. Effector mechanisms of rejection. Cold Spring Harb Perspect Med. 2013;3(11):a015461. doi: 10.1101/cshperspect.a015461
  • Wang P, Jiang Z, Wang C, et al. Immune tolerance induction using cell-based strategies in liver transplantation: clinical perspectives. Front Immunol. 2020 [[cited 2023 Apr 24]];11. InternetAvailable from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.01723
  • Kim S, Hupperetz C, Lim S, et al. Genome editing of immune cells using CRISPR/Cas9. BMB Rep. 2021;54(1):59–69. doi: 10.5483/BMBRep.2021.54.1.245
  • Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol. 2019;37(3):252–258. doi: 10.1038/s41587-019-0016-3
  • Trounson A, Boyd NR, Boyd RL. Toward a universal solution: editing compatibility into pluripotent stem cells. Cell Stem Cell. 2019;24(4):508–510. doi: 10.1016/j.stem.2019.03.003
  • Lanza R, Russell DW, Nagy A. Engineering universal cells that evade immune detection. Nat Rev Immunol. 2019;19(12):723–733. doi: 10.1038/s41577-019-0200-1
  • Hussain Y, Khan H. Immunosuppressive drugs. Encyclopedia Infect Immun. 2022;726–740 doi: 10.1016/B978-0-12-818731-9.00068-9
  • Vazirabad I, Chhabra S, Nytes J, et al. Direct HLA genetic comparisons identify highly matched unrelated donor-recipient pairs with improved transplantation outcome. Biol Blood Marrow Transplant. 2019;25(5):921–931. doi: 10.1016/j.bbmt.2018.12.006
  • Wang Z, Zheng J, Pan R, et al. Current status and future prospects of patient-derived induced pluripotent stem cells. Hum Cell. 2021;34(6):1601–1616. doi: 10.1007/s13577-021-00592-2
  • Bell S, Hettige NC, Silveira H, et al. Differentiation of Human Induced Pluripotent Stem Cells (iPscs) into an effective model of forebrain neural progenitor cells and mature neurons. Bio Protoc. 2019;9(5):e3188. doi: 10.21769/BioProtoc.3188
  • Al Abbar A, Ngai SC, Nograles N, et al. Induced pluripotent stem cells: reprogramming platforms and applications in cell replacement therapy. Biores Open Access. 2020;9(1):121–136. doi: 10.1089/biores.2019.0046
  • Wertheim L, Edri R, Goldshmit Y, et al. Regenerating the injured spinal cord at the chronic phase by engineered iPscs-derived 3D neuronal networks. Adv Sci. 2022;9(11):e2105694. doi: 10.1002/advs.202105694
  • Werbowetski-Ogilvie TE, Bossé M, Stewart M, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009;27(1):91–97. doi: 10.1038/nbt.1516
  • Merkle FT, Ghosh S, Kamitaki N, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017;545(7653):229–233. doi: 10.1038/nature22312
  • Amps K, Andrews PW, Anyfantis G, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:1132–1144.
  • Werbowetski‐Ogilvie TE, Morrison LC, Fiebig‐Comyn A, et al. In Vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation. Stem Cells. 2012;30(3):392–404. doi: 10.1002/stem.1017
  • Lund RJ, Närvä E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet. 2012;13(10):732–744. doi: 10.1038/nrg3271
  • Ross AL, Leder DE, Weiss J, et al. Genomic instability in cultured stem cells: associated risks and underlying mechanisms. Regen Med. 2011;6(5):653–662. doi: 10.2217/rme.11.44
  • Poetsch MS, Strano A, Guan K. Human induced pluripotent stem cells: from cell origin, genomic stability, and epigenetic memory to translational medicine. Stem Cells. 2022;40(6):546–555. doi: 10.1093/stmcls/sxac020
  • Garitaonandia I, Amir H, Boscolo FS, et al. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One. 2015;10(2):e0118307. doi: 10.1371/journal.pone.0118307
  • Stephenson E, Ogilvie CM, Patel H, et al. Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells. J R Soc Interface. 2010;7(suppl_6):S677–S688. doi: 10.1098/rsif.2010.0343.focus
  • Nguyen HT, Geens M, Mertzanidou A, et al. Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-Xl. Mol Hum Reprod. 2014;20(2):168–177. doi: 10.1093/molehr/gat077
  • Avery S, Hirst AJ, Baker D, et al. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Rep. 2013;1(5):379–386. doi: 10.1016/j.stemcr.2013.10.005
  • Iwatani M, Ikegami K, Kremenska Y, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24(11):2549–2556. doi: 10.1634/stemcells.2005-0427
  • Diaferia GR, Dessì SS, Deblasio P, et al. Is stem cell chromosomes stability affected by cryopreservation conditions? Cytotechnology. 2008;58(1):11–16. doi: 10.1007/s10616-008-9163-y
  • Mayshar Y, Ben-David U, Lavon N, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7(4):521–531. doi: 10.1016/j.stem.2010.07.017
  • Närvä E, Autio R, Rahkonen N, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28(4):371–377. doi: 10.1038/nbt.1615
  • Hussein SM, Batada NN, Vuoristo S, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471(7336):58–62. doi: 10.1038/nature09871
  • Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPscs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–118. doi: 10.1016/j.stem.2010.12.003
  • Grespi V, Caprera C, Ricciolini C, et al. Human neural stem cells drug product: microsatellite instability analysis. PLoS One. 2022;17(8):e0273679. doi: 10.1371/journal.pone.0273679
  • Wu H, Kim KJ, Mehta K, et al. Copy number variant analysis of human embryonic stem cells. Stem Cells. 2008;26(6):1484–1489. doi: 10.1634/stemcells.2007-0993
  • Liang Q, Conte N, Skarnes WC, et al. Extensive genomic copy number variation in embryonic stem cells. Proc Natl Acad Sci, USA. 2008;105(45):17453–17456. doi: 10.1073/pnas.0805638105
  • Li YR, van Setten J, Verma SS, et al. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Med. 2015;7(1):90. doi: 10.1186/s13073-015-0211-x
  • Petrus-Reurer S, Kumar P, Padrell Sánchez S, et al. Preclinical safety studies of human embryonic stem cell-derived retinal pigment epithelial cells for the treatment of age-related macular degeneration. Stem Cells Transl Med. 2020;9(8):936–953. doi: 10.1002/sctm.19-0396
  • Merkle FT, Ghosh S, Genovese G, et al. Biological insights from the whole genome analysis of human embryonic stem cells [Internet]. bioRxiv; 2020 [cited 2023 Apr 23]. p. 2020.10.26.337352. Available from: https://www.biorxiv.org/content/10.1101/2020.10.26.337352v1.
  • Merkle FT, Ghosh S, Genovese G, et al. Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation. Cell Stem Cell. 2022;29(3):472–486.e7. doi: 10.1016/j.stem.2022.01.011
  • Iida T, Iwanami A, Sanosaka T, et al. Whole-genome DNA methylation analyses revealed epigenetic instability in tumorigenic human ips cell-derived neural stem/progenitor cells. Stem Cells. 2017;35(5):1316–1327. doi: 10.1002/stem.2581
  • McIntire E, Leonhard K, Taapken S, et al. G-Banded karyotyping of human pluripotent stem cell cultures. Methods Mol Biol. 2021;2239:251–268.
  • Ashton RS, Peltier J, Fasano CA, et al. High-throughput screening of gene function in stem cells using clonal microarrays. Stem Cells. 2007;25(11):2928–2935. doi: 10.1634/stemcells.2007-0468
  • Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021;1(1):1–21. doi: 10.1038/s43586-021-00056-9
  • Runheim H, Pettersson M, Hammarsjö A, et al. The cost-effectiveness of whole genome sequencing in neurodevelopmental disorders. Sci Rep. 2023;13(1):6904. doi: 10.1038/s41598-023-33787-8
  • Nas K, Yazmalar L, Şah V, et al. Rehabilitation of spinal cord injuries. World J Orthop. 2015;6(1):8–16. doi: 10.5312/wjo.v6.i1.8
  • Leemhuis E, Favieri F, Forte G, et al. Integrated neuroregenerative techniques for plasticity of the injured spinal cord. Biomedicines. 2022;10(10):2563. doi: 10.3390/biomedicines10102563
  • Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med. 2020;12(3):e11505. doi: 10.15252/emmm.201911505
  • Moritz CT, Ambrosio F. Regenerative rehabilitation: combining stem cell therapies and activity dependent stimulation. Pediatr Phys Ther. 2017;29:S10–S15. doi: 10.1097/PEP.0000000000000378
  • Hillen BK, Abbas JJ, Jung R. Accelerating locomotor recovery after incomplete spinal injury. Ann N Y Acad Sci. 2013;1279(1):164–174. doi: 10.1111/nyas.12061
  • Hwang DH, Park HH, Shin HY, et al. Insulin-like growth factor-1 receptor dictates beneficial effects of treadmill training by regulating survival and migration of neural stem cell grafts in the injured spinal cord. Exp Neurobiol. 2018;27(6):489–507. doi: 10.5607/en.2018.27.6.489
  • Burns AS, Marino RJ, Kalsi-Ryan S, et al. Type and timing of rehabilitation following acute and subacute spinal cord injury: a systematic review. Global Spine J. 2017;7(3_suppl):175S–194S. doi: 10.1177/2192568217703084
  • Clark JMR, Krause JS. Life satisfaction in individuals with long-term traumatic spinal cord injury: an investigation of associated biopsychosocial factors. Arch Phys Med Rehabil. 2022;103(1):98–105. doi: 10.1016/j.apmr.2021.09.002
  • Baranovskii DS, Klabukov ID, Arguchinskaya NV, et al. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investig. 2022;9:7. doi: 10.21037/sci-2022-025
  • Curt A, Hsieh J, Schubert M, et al. The damaged spinal cord is a suitable target for stem cell transplantation. Neurorehabil Neural Repair. 2020;34(8):758–768. doi: 10.1177/1545968320935815
  • Wu X, Liu J, Tanadini LG, et al. Challenges for defining minimal clinically important difference (MCID) after spinal cord injury. Spinal Cord. 2015;53(2):84–91. doi: 10.1038/sc.2014.232
  • de Groot S, Bevers G, Post MWM, et al. Effect and process evaluation of implementing standardized tests to monitor patients in spinal cord injury rehabilitation. Disabil Rehabil. 2010;32(7):588–597. doi: 10.3109/09638280903174414
  • Fehlings MG, Pedro K, Hejrati N. Management of acute spinal cord injury: where have we been? where are we now? Where are we going? J Neurotrauma. 2022;39(23–24):1591–1602. doi: 10.1089/neu.2022.0009
  • Freund P, Seif M, Weiskopf N, et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol. 2019;18(12):1123–1135. doi: 10.1016/S1474-4422(19)30138-3
  • Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–415. doi: 10.1016/0197-2456(89)90005-6
  • Kwon BK, Bloom O, Wanner IB, et al. Neurochemical biomarkers in spinal cord injury. Spinal Cord. 2019;57(10):819–831. doi: 10.1038/s41393-019-0319-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.