204
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent advances of Phosphodiesterase 4B in cancer

, , , , , , , & show all
Pages 121-132 | Received 12 Nov 2022, Accepted 19 Feb 2023, Published online: 28 Feb 2023

References

  • de Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–e190.
  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021. DOI:10.1002/ijc.33588.
  • Bray F, Laversanne M, Weiderpass E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127(16):3029–3030.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
  • Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol. 2022;14(2):396–412.
  • Dong H, Zhang L, Liu S. Targeting HMGB1: an available Therapeutic Strategy for Breast Cancer Therapy. Int J Biol Sci. 2022;18(8):3421–3434.
  • Gangwar SK, Kumar A, Yap KC, et al. Targeting Nuclear Receptors in Lung Cancer-Novel Therapeutic Prospects. Pharmaceuticals (Basel). 2022;15(5):624.
  • Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update. Pharmacol Res. 2022;175:106037.
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–545.
  • Virchow R. Cellular pathology: lecture VIII. Blood and lymph. CA Cancer J Clin. 1975;25(2):93–97.
  • Zhang JZ, Lu TW, Stolerman LM, et al. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell. 2020;182(6):1531–1544 e15.
  • Lian J, Yue Y, Yu W, et al. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13(1):151.
  • Azevedo MF, Faucz FR, Bimpaki E, et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 2014;35(2):195–233.
  • Maurice DH, Ke H, Ahmad F, et al. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13(4):290–314.
  • Marko D, Pahlke G, Merz KH, et al. Cyclic 3’,5’-nucleotide phosphodiesterases: potential targets for anticancer therapy. Chem Res Toxicol. 2000;13(10):944–948.
  • Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007;76:481–511.
  • Schick MA, Schlegel N. Clinical Implication of Phosphodiesterase-4-Inhibition. Int J Mol Sci. 2022;23(3):1209.
  • MacKenzie SJ, Baillie GS, McPhee I, et al. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). Br J Pharmacol. 2002;136(3):421–433.
  • Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;370(Pt 1):1–18.
  • Paes D, Schepers M, Rombaut B, et al. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: an Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev. 2021;73(3):1016–1049.
  • Tibbo AJ, Baillie GS. Phosphodiesterase 4B: master Regulator of Brain Signaling. Cells. 2020;9(5):1254.
  • Blackman BE, Horner K, Heidmann J, et al. PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. J Biol Chem. 2011;286(14):12590–12601.
  • Sibley CR, Emmett W, Blazquez L, et al. Recursive splicing in long vertebrate genes. Nature. 2015;521(7552):371–375.
  • Hsien Lai S, Zervoudakis G, Chou J, et al. PDE4 subtypes in cancer. Oncogene. 2020;39(19):3791–3802.
  • Herrmann FE, Hesslinger C, Wollin L, et al. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol. 2022;13:838449.
  • Baillie GS, MacKenzie SJ, McPhee I, et al. Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases. Br J Pharmacol. 2000;131(4):811–819.
  • Kahler AK, Otnaess MK, Wirgenes KV, et al. Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):86–96.
  • Shepherd M, McSorley T, Olsen AE, et al. Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochem J. 2003;370(Pt 2):429–438.
  • Cheung YF, Kan Z, Garrett-Engele P, et al. PDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying N-terminal region is identical to that of cAMP phosphodiesterase-4D6 (PDE4D6). J Pharmacol Exp Ther. 2007;322(2):600–609.
  • Tsunoda T, Ota T, Fujimoto T, et al. Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol Cancer. 2012;11:46.
  • He RQ, Li XJ, Liang L, et al. The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model. BMC Cancer. 2017;17(1):655.
  • Smith PG, Wang F, Wilkinson KN, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood. 2005;105(1):308–316.
  • Suhasini AN, Wang L, Holder KN, et al. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma. Leukemia. 2016;30(3):617–626.
  • Goldar S, Khaniani MS, Derakhshan SM, et al. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–2144.
  • Kashiwagi E, Shiota M, Yokomizo A, et al. Downregulation of phosphodiesterase 4B (PDE4B) activates protein kinase A and contributes to the progression of prostate cancer. Prostate. 2012;72(7):741–751.
  • Murdoch H, Mackie S, Collins DM, et al. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci. 2007;27(35):9513–9524.
  • Epstein PM. Different phosphodiesterases (PDEs) regulate distinct phosphoproteomes during cAMP signaling. Proc Natl Acad Sci U S A. 2017;114(30):7741–7743.
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Muniyan S, Li B, Batra SK. Editorial: metastatic Castration Resistant Prostate Cancer: prognosis and Treatment. Front Oncol. 2022;12:913630.
  • Bottcher R, Henderson DJ, Dulla K, et al. Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG-positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression. Br J Cancer. 2015;113(10):1502–1511.
  • Henderson DJ, Byrne A, Dulla K, et al. The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells. Br J Cancer. 2014;110(5):1278–1287.
  • Sarwar M, Sandberg S, Abrahamsson PA, et al. Protein kinase A (PKA) pathway is functionally linked to androgen receptor (AR) in the progression of prostate cancer. Urol Oncol. 2014;32(1):25 e1–12.
  • Bagchi G, Wu J, French J, et al. Androgens transduce the G alphas-mediated activation of protein kinase A in prostate cells. Cancer Res. 2008;68(9):3225–3231.
  • de Alexandre RB, Horvath AD, Szarek E, et al. Phosphodiesterase sequence variants may predispose to prostate cancer. Endocr Relat Cancer. 2015;22(4):519–530.
  • Abdel-Wahab BA, Walbi IA, Albarqi HA, et al. Roflumilast protects from cisplatin-induced testicular toxicity in male rats and enhances its cytotoxicity in prostate cancer cell line. Role of NF-κB-p65, cAMP/PKA and Nrf2/HO-1, NQO1 signaling. Food Chem Toxicol. 2021;151:112133.
  • Kwak HJ, Park KM, Choi HE, et al. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal. 2008;20(5):803–814.
  • Ansari MN, Aloliet RI, Ganaie MA, et al. Roflumilast, a phosphodiesterase 4 inhibitor, attenuates cadmium-induced renal toxicity via modulation of NF-κB activation and induction of NQO1 in rats. Hum Exp Toxicol. 2019;38(5):588–597.
  • Hunt KE, Reichard KK. Diffuse large B-cell lymphoma. Arch Pathol Lab Med. 2008;132(1):118–124.
  • Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–459.
  • Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):15–25.
  • Fowler NH, Cheah CY, Gascoyne RD, et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica. 2016;101(5):531–540.
  • Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74.
  • Liapis K, Clear A, Owen A, et al. The microenvironment of AIDS-related diffuse large B-cell lymphoma provides insight into the pathophysiology and indicates possible therapeutic strategies. Blood. 2013;122(3):424–433.
  • Kim SW, Rai D, McKeller MR, et al. Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL. Blood. 2009;113(24):6153–6160.
  • Ethiraj P, Sasi B, Holder KN, et al. Cyclic-AMP signalling, MYC and hypoxia-inducible factor 1alpha intersect to regulate angiogenesis in B-cell lymphoma. Br J Haematol. 2022;198(2):349–359.
  • Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–691.
  • Mahmood B, Damm MM, Jensen TS, et al. Phosphodiesterases in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. BMC Cancer. 2016;16(1):938.
  • Kim DU, Kwak B, Kim SW. Phosphodiesterase 4B is an effective therapeutic target in colorectal cancer. Biochem Biophys Res Commun. 2019;508(3):825–831.
  • Pleiman JK, Irving AA, Wang Z, et al. The conserved protective cyclic AMP-phosphodiesterase function PDE4B is expressed in the adenoma and adjacent normal colonic epithelium of mammals and silenced in colorectal cancer. PLoS Genet. 2018;14(9):e1007611.
  • Kim DU, Nam J, Cha MD, et al. Inhibition of phosphodiesterase 4D decreases the malignant properties of DLD-1 colorectal cancer cells by repressing the AKT/mTOR/Myc signaling pathway. Oncol Lett. 2019;17(3):3589–3598.
  • Cho-Chung YS. cAMP signaling in cancer genesis and treatment. Cancer Treat Res. 2003;115:123–143.
  • Watanabe Y, Murata T, Shimizu K, et al. Phosphodiesterase 4 regulates the migration of B16-F10 melanoma cells. Exp Ther Med. 2012;4(2):205–210.
  • Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol. 2012;4(12):a011148.
  • Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–861.
  • Pollack A, Bae K, Khor LY, et al. The importance of protein kinase A in prostate cancer: relationship to patient outcome in Radiation Therapy Oncology Group trial 92-02. Clin Cancer Res. 2009;15(17):5478–5484.
  • Zhang H, Kong Q, Wang J, et al. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol. 2020;9(1):32.
  • Chen L, Stacewicz-Sapuntzakis M, Duncan C, et al. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst. 2001;93(24):1872–1879.
  • Liu A, Pan W, Zhuang S, et al. Cancer cell-derived exosomal miR-425-3p induces white adipocyte atrophy. Adipocyte. 2022;11(1):487–500.
  • Ma J, Sun X, Guo T, et al. Interleukin-1 receptor antagonist inhibits angiogenesis via blockage IL-1α/PI3K/NF-κβ pathway in human colon cancer cell. Cancer Manag Res. 2017;9:481–493.
  • Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281(1):57–61.
  • Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50(4):778–795.
  • Yang JX, Hsieh KC, Chen YL, et al. Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages. Sci Rep. 2017;7:46165.
  • Li H, Fan C, Feng C, et al. Inhibition of phosphodiesterase-4 attenuates murine ulcerative colitis through interference with mucosal immunity. Br J Pharmacol. 2019;176(13):2209–2226.
  • Cai Y, Huang G, Ma L, et al. Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. Biochim Biophys Acta Mol Cell Res. 2018;1865(2):297–308.
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014;4:64.
  • Fruman DA, Chiu H, Hopkins BD, et al. The PI3K Pathway in Human Disease. Cell. 2017;170(4):605–635.
  • Di Lisio L, Martinez N, Montes-Moreno S, et al. The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas. Blood. 2012;120(9):1782–1790.
  • Zhou Q, He DX, Deng YL, et al. MiR-124-3p targeting PDE4B attenuates LPS-induced ALI through the TLR4/NF-κB signaling pathway. Int Immunopharmacol. 2022;105:108540.
  • Kim SW, Rai D, Aguiar RC. Gene set enrichment analysis unveils the mechanism for the phosphodiesterase 4B control of glucocorticoid response in B-cell lymphoma. Clin Cancer Res. 2011;17(21):6723–6732.
  • Kim J, Jeong D, Nam J, et al. MicroRNA-124 regulates glucocorticoid sensitivity by targeting phosphodiesterase 4B in diffuse large B cell lymphoma. Gene. 2015;558(1):173–180.
  • Xu W, Berning P, Lenz G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood. 2021;138(13):1110–1119.
  • Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond). 2017;131(3):197–210.
  • Papa A, Pandolfi PP. The PTEN⁻PI3K Axis in Cancer. Biomolecules. 2019;9(4):153.
  • Nam J, Kim DU, Kim E, et al. Disruption of the Myc-PDE4B regulatory circuitry impairs B-cell lymphoma survival. Leukemia. 2019;33(12):2912–2923.
  • Dou AX, Wang X. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma. Chin Med J (Engl). 2010;123(1):95–99.
  • Karar J, Maity A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci. 2011;4:51.
  • Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3–38.
  • Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007.
  • Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600–604.
  • Guo W, Hao B, Wang Q, et al. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells. Exp Cell Res. 2013;319(18):2801–2811.
  • Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16(5):281–298.
  • Roskoski R Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol Res. 2018;135:239–258.
  • Rapp UR, Goldsborough MD, Mark GE, et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci U S A. 1983;80(14):4218–4222.
  • Marquette A, André J, Bagot M, et al. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol. 2011;18(5):584–591.
  • Wang P, Wu P, Ohleth KM, et al. Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol. 1999;56(1):170–174.
  • Haferlach T, Kohlmann A, Wieczorek L, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010;28(15):2529–2537.
  • Lin Z, Chen B, Wu T, et al. Highly Tumorigenic Diffuse Large B Cell Lymphoma Cells Are Produced by Coculture with Stromal Cells. Acta Haematol. 2018;139(4):201–216.
  • Zhao S, Dong X, Shen W, et al. Machine learning-based classification of diffuse large B-cell lymphoma patients by eight gene expression profiles. Cancer Med. 2016;5(5):837–852.
  • Huang Z, Liu J, Yang J, et al. PDE4B Induces Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Is Transcriptionally Suppressed by CBX7. Front Cell Dev Biol. 2021;9:783050.
  • Crocetti L, Floresta G, Cilibrizzi A, et al. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules. 2022;27(15):4964.
  • Zhuo C, Tian H, Chen J, et al. Associations of cognitive impairment in patients with schizophrenia with genetic features and with schizophrenia-related structural and functional brain changes. Front Genet. 2022;13:880027.
  • Tong L, Shan M, Zou W, et al. Cyclic adenosine monophosphate/phosphodiesterase 4 pathway associated with immune infiltration and PD-L1 expression in lung adenocarcinoma cells. Front Oncol. 2022;12:904969.
  • Tiwari S, Felekkis K, Moon EY, et al. Among circulating hematopoietic cells, B-CLL uniquely expresses functional EPAC1, but EPAC1-mediated Rap1 activation does not account for PDE4 inhibitor-induced apoptosis. Blood. 2004;103(7):2661–2667.
  • Erdogan S, Houslay MD. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Biochem J. 1997;321(Pt 1):165–175.
  • Moon E, Lee R, Near R, et al. Inhibition of PDE3B augments PDE4 inhibitor-induced apoptosis in a subset of patients with chronic lymphocytic leukemia. Clin Cancer Res. 2002;8(2):589–595.
  • Mokry J, Urbanova A, Medvedova I, et al. Effects of tadalafil (PDE5 inhibitor) and roflumilast (PDE4 inhibitor) on airway reactivity and markers of inflammation in ovalbumin-induced airway hyperresponsiveness in Guinea pigs. J Physiol Pharmacol. 2017;68(5):721–730.
  • Clayton RA, Dick CA, Mackenzie A, et al. The effect of selective phosphodiesterase inhibitors, alone and in combination, on a murine model of allergic asthma. Respir Res. 2004;5(1):4.
  • Sezgi C, Şenyiğit A. [A new alternative treatment in COPD: phosphodiesterase-4 inhibitors]. Tuberk Toraks. 2011;59(3):285–290.
  • Topical Roflumilast to Treat Scalp and Body Psoriasis (ARRECTOR) ARRECTOR. [cited 2022 Oct 12]. Available from: https://clinicaltrials.gov/ct2/show/record/NCT05028582
  • Xing M, Akowuah GA, Gautam V, et al. Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. J Biomol Struct Dyn. 2017;35(13):2910–2924.
  • Fox D, Burgin AB, Gurney ME. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell Signal. 2014;26(3):657–663.
  • Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016 ;539(7630):479.
  • Hryhorowicz M, Lipiński D, Zeyland J, et al. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Arch Immunol Ther Exp (Warsz). 2017;65(3):233–240.
  • Xu T, Li L, Liu YC, et al. CRISPR/Cas9-related technologies in liver diseases: from feasibility to future diversity. Int J Biol Sci. 2020;16(13):2283–2295.
  • Cheng H, Zhang F, Ding Y. CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications. Pharmaceutics. 2021;13(10):1649.
  • Zhang X, He S, Hu X, et al. Comparison of the Full-Length and 152~528 Truncate of Human Cyclic Nucleotide Phosphodiesterase 4B2 for the Characterization of Inhibitors. Comb Chem High Throughput Screen. 2019;22(1):49–58.
  • Rickles RJ, Pierce LT, Giordano TP, et al. Adenosine A2A receptor agonists and PDE inhibitors: a synergistic multitarget mechanism discovered through systematic combination screening in B-cell malignancies. Blood. 2010;116(4):593–602.
  • Wu P. The Nobel Prize in Chemistry 2022: fulfilling Demanding Applications with Simple Reactions. ACS Chem Biol. 2022;17(11):2959–2961.
  • Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126(46):15046–15047.
  • Jewett JC, Bertozzi CR. Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org Lett. 2011;13(22):5937–5939.
  • Sletten EM, Bertozzi CR. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res. 2011;44(9):666–676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.