1,834
Views
0
CrossRef citations to date
0
Altmetric
Review

Parasite and host kinases as targets for antimalarials

, , , &
Pages 151-169 | Received 15 Nov 2022, Accepted 24 Feb 2023, Published online: 20 Mar 2023

References

  • World Health Organization. World malaria report. Vol. 2021. Geneva: World Health Organization; 2021.
  • World Health Organization. Global technical strategy for malaria 2016-2030, 2021 update. Geneva: World Health Organization; 2021.
  • Dondorp AM, Nosten F, Yi P, et al. Artemisinin Resistance in Plasmodium falciparum Malaria. N Engl J Med. 2009;361(5):455–467.
  • Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26(10):1602–1608.
  • Uwimana A, Umulisa N, Venkatesan M, et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis. 2021;21(8):1120–1128.
  • Balikagala B, Fukuda N, Ikeda M, et al. Evidence of artemisinin-resistant Malaria in Africa. N Engl J Med. 2021;385(13):1163–1171.
  • Moolman C, Sluis R, Beteck R, et al. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules. 2020;25(21):5182.
  • Mustière R, Vanelle P, Primas N. Plasmodial kinase inhibitors targeting malaria: recent developments. Molecules. 2020;25(24):5949.
  • Adderley J, Doerig C. Comparative analysis of the kinomes of Plasmodium falciparum, Plasmodium vivax and their host Homo sapiens. BMC Genomics. 2022;23(1):237.
  • Adderley J, Williamson T, Doerig C. Parasite and host erythrocyte kinomics of plasmodium infection. Trends Parasitol. 2021;37(6):508–524.
  • Yang T, Ottilie S, Istvan ES, et al. MalDA, accelerating malaria drug discovery. Trends Parasitol. 2021;37(6):493–507.
  • Forte B, Ottilie S, Plater A, et al. Prioritization of molecular targets for antimalarial drug discovery. ACS Infect Dis. 2021;7(10):2764–2776.
  • McNamara CW, Lee MCS, Lim CS, et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature. 2013;504(7479):248–253.
  • Paquet T, Le Manach C, Cabrera DG, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9(387):eaad9735.
  • Brunschwig C, Lawrence N, Taylor D, et al. UCT943, a Next-Generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria. antimicrob. Agents Chemother. 2018;62(9):e00012–18.
  • Alam MM, Sanchez-Azqueta A, Janha O, et al. Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target. Science. 2019;365(6456):eaau1682.
  • Lu K, Mansfield CR, Fitzgerald MC, et al. Chemoproteomics for plasmodium parasite drug target discovery. ChemBioChem. 2021;22(16):2591–2599.
  • Eberl HC, Werner T, Reinhard FB, et al. Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Sci Rep. 2019;9(1):14159.
  • Balestra AC, Koussis K, Klages N, et al. Ca2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. Sci Adv. 2021;7(13):eabe5396.
  • Matralis AN, Malik A, Penzo M, et al. Development of chemical entities endowed with potent fast-killing properties against plasmodium falciparum malaria parasites. J Med Chem. 2019;62(20):9217–9235.
  • Penzo M, de Las Heras-dueña L, Mata-Cantero, B L, et al. Ghidelli-disse et al. high-throughput screening of the plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci Rep. 2019;9(1):1–13.
  • Vanaerschot M, Murithi JM, Pasaje CFA, et al. Inhibition of Resistance-Refractory P. falciparum Kinase PKG delivers prophylactic, blood stage, and transmission-blocking antiplasmodial activity. Cell Chem Biol. 2020;27(7):806–816.
  • Kato N, Sakata T, Breton G, et al. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol. 2008;4(6):347–356.
  • Sinxadi P, Donini C, Johnstone H, et al. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel plasmodium phosphatidylinositol 4-Kinase Inhibitor MMV390048 in Healthy Volunteers. Antimicrob Agents Chemother. 2020;64(4):1–12.
  • McCarthy JS, Donini C, Chalon S, et al. A phase 1, placebo-controlled, randomized, single ascending dose study and a volunteer infection study to characterize the safety, pharmacokinetics, and antimalarial activity of the plasmodium phosphatidylinositol 4-Kinase Inhibitor MMV390048. Clin Infect Dis. 2020;71(10):e657–e664.
  • Hassett MR, Roepe PD. PIK-ing new malaria chemotherapy. Trends Parasitol. 2018;34(11):925–927.
  • Balla T. Phosphoinositides: tiny Lipids With Giant Impact on Cell Regulation. Physiol Rev. 2013;93(3):1019–1137.
  • Maurya R, Tripathi A, Kumar M, et al. PI4‐kinase and PfCDPK7 signaling regulate phospholipid biosynthesis in Plasmodium falciparum. EMBO Rep. 2022;23(2):1–15.
  • Zhang M, Wang C, Otto TD, et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360(6388):7847.
  • Plouffe D, Brinker A, McNamara C, et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci. 2008;105(26):9059–9064.
  • Zou B, Nagle A, Chatterjee AK, et al. Lead Optimization of Imidazopyrazines: a new class of antimalarial with activity on plasmodium liver stages. ACS Med Chem Lett. 2014;5(8):947–950.
  • Zeeman A-M, Lakshminarayana SB, van der Werff N, et al. PI4 kinase is a prophylactic but not radical curative target in plasmodium vivax-type malaria parasites. Antimicrob Agents Chemother. 2016;60(5):2858–2863.
  • Dembele L, Ang X, Chavchich M, et al. The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Sci Rep. 2017;7(1):2325.
  • Witkowski B, Lelièvre J, López Barragán MJ, et al. Increased tolerance to artemisinin in plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54(5):1872–1877.
  • Younis Y, Douelle F, Feng T-S, et al. 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J Med Chem. 2012;55(7):3479–3487.
  • Fienberg S, Eyermann CJ, Arendse LB, et al. Structural basis for inhibitor potency and selectivity of plasmodium falciparum phosphatidylinositol 4-kinase inhibitors. ACS Infect Dis. 2020;6(11):3048–3063.
  • MMV390048 POC in Patients With P. Vivax and P. Falciparum Malaria. ClinicalTrials.gov Identifier: NCT02880241. Available at https://clinicaltrials.gov/ct2/show/NCT02880241 cited 2022 Jul 21
  • Mohammed R, Asres MS, Gudina EK, et al. Efficacy, safety, tolerability, and pharmacokinetics of MMV390048 in acute uncomplicated malaria. Am J Trop Med Hyg. 2023;108(1):81–84.
  • González Cabrera D, Douelle F, Younis Y, et al. Structure–activity relationship studies of orally active antimalarial 3,5-substituted 2-aminopyridines. J Med Chem. 2012;55(24):11022–11030.
  • Younis Y, Douelle F, González Cabrera D, et al. Structure–activity-relationship studies around the 2-amino group and pyridine core of antimalarial 3,5-diarylaminopyridines lead to a novel series of pyrazine analogues with oral in vivo activity. J Med Chem. 2013;56(21):8860–8871.
  • Le Manach C, Nchinda AT, Paquet T, et al. Identification of a potential antimalarial drug candidate from a series of 2-aminopyrazines by optimization of aqueous solubility and potency across the parasite life cycle. J Med Chem. 2016;59(21):9890–9905.
  • Gibhard L, Njoroge M, Paquet T, et al. Investigating sulfoxide-to-sulfone conversion as a prodrug strategy for a phosphatidylinositol 4-kinase inhibitor in a humanized mouse model of malaria. Antimicrob Agents Chemother. 2018;62(12):e00261–18.
  • Liang X, Jiang Z, Huang Z, et al. Discovery of 6′-chloro-N-methyl-5’-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. Eur J Med Chem. 2020;188:112012.
  • Kandepedu N, Gonzàlez Cabrera D, Eedubilli S, et al. Identification, characterization, and optimization of 2,8-disubstituted-1,5-naphthyridines as novel plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria. J Med Chem. 2018;61(13):5692–5703.
  • Krishnan K, Ziniel P, Li H, et al. Torin 2 Derivative, NCATS-SM3710, Has Potent Multistage Antimalarial Activity through Inhibition of P. falciparum Phosphatidylinositol 4-Kinase (PfPI4KIIIβ). ACS Pharmacol Transl Sci. 2020;3(5):948–964.
  • Ward P, Equinet L, Packer J, et al. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics. 2004;5(1):79.
  • Deng W, Baker DA. A novel cyclic GMP-dependent protein kinase is expressed in the ring stage of the Plasmodium falciparum life cycle. Mol Microbiol. 2002;44(5):1141–1151.
  • El Bakkouri M, Kouidmi I, Wernimont AK, et al. Structures of the cGMP-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation. Proc Natl Acad Sci. 2019;116(28):14164–14173.
  • Hopp CS, Flueck C, Solyakov L, et al. Spatiotemporal and Functional Characterisation of the Plasmodium falciparum cGMP-Dependent Protein Kinase. PLoS One. 2012;7(11):e48206.
  • Alam MM, Solyakov L, Bottrill AR, et al. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nat Commun. 2015;6(1):7285.
  • Govindasamy K, Khan R, Snyder M, et al. Plasmodium falciparum Cyclic GMP-Dependent Protein Kinase Interacts with a Subunit of the Parasite Proteasome. Infect Immun. 2019;87(1):e00523–18.
  • Solyakov L, Halbert J, Alam MM, et al. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun. 2011;2(1):565.
  • Tewari R, Straschil U, Bateman A, et al. The systematic functional analysis of plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe. 2010;8(4):377–387.
  • Taylor HM, McRobert L, Grainger M, et al. The Malaria Parasite Cyclic GMP-Dependent Protein Kinase Plays a Central Role in Blood-Stage Schizogony. Eukaryot Cell. 2010;9(1):37–45.
  • McRobert L, Taylor CJ, Deng W, et al. Gametogenesis in Malaria Parasites Is Mediated by the cGMP-Dependent Protein Kinase. PLoS Biol. 2008;6(6):e139.
  • Moon RW, Taylor CJ, Bex C, et al. A Cyclic GMP Signalling Module That Regulates Gliding Motility in a Malaria Parasite. PLoS Pathog. 2009;5(9):e1000599.
  • Koussis K, Withers-Martinez C, Baker DA, et al. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci. Alliance. 2020;3(4):e201900626.
  • Collins CR, Hackett F, Strath M, et al. Malaria Parasite cGMP-dependent Protein Kinase Regulates Blood Stage Merozoite Secretory Organelle Discharge and Egress. PLoS Pathog. 2013;9(5):e1003344.
  • Dvorin JD, Martyn DC, Patel SD, et al. A Plant-Like Kinase in Plasmodium falciparum Regulates Parasite Egress from Erythrocytes. Science. 2010;328(5980):910–912.
  • Thomas JA, Tan MSY, Bisson C, et al. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol. 2018;3(4):447–455.
  • Brochet M, Collins MO, Smith TK, et al. Phosphoinositide Metabolism Links cGMP-Dependent Protein Kinase G to Essential Ca2+ Signals at Key Decision Points in the Life Cycle of Malaria Parasites. PLoS Biol. 2014;12(3):e1001806.
  • Falae A, Combe A, Amaladoss A, et al. Role of Plasmodium berghei cGMP-dependent Protein Kinase in Late Liver Stage Development. J Biol Chem. 2010;285(5):3282–3288.
  • Govindasamy K, Jebiwott S, Jaijyan DK, et al. Invasion of hepatocytes by Plasmodium sporozoites requires cGMP-dependent protein kinase and calcium dependent protein kinase 4. Mol Microbiol. 2016;102(2):349–363.
  • Nare B, Allocco JJ, Liberator PA, et al. Evaluation of a Cyclic GMP-Dependent Protein Kinase Inhibitor in Treatment of Murine Toxoplasmosis: gamma Interferon Is Required for Efficacy. Antimicrob Agents Chemother. 2002;46(2):300–307.
  • Donald RGK, Allocco J, Singh SB, et al. Toxoplasma gondii Cyclic GMP-Dependent Kinase: chemotherapeutic Targeting of an Essential Parasite Protein Kinase. Eukaryot Cell. 2002;1(3):317–328.
  • Gurnett AM, Liberator PA, Dulski PM, et al. Purification and Molecular Characterization of cGMP-dependent Protein Kinase from Apicomplexan Parasites. J Biol Chem. 2002;277(18):15913–15922.
  • Biftu T, Feng D, Fisher M, et al. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents. Bioorganic Med. Chem. Lett. 2006;16(9):2479–2483.
  • Baker DA, Stewart LB, Large JM, et al. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nat Commun. 2017;8(1):430.
  • Large JM, Birchall K, Bouloc NS, et al. Potent inhibitors of malarial P. Falciparum protein kinase G: improving the cell activity of a series of imidazopyridines. Bioorganic Med. Chem. Lett. 2019;29(3):509–514.
  • Large JM, Birchall K, Bouloc NS, et al. Potent bicyclic inhibitors of malarial cGMP-dependent protein kinase: approaches to combining improvements in cell potency, selectivity and structural novelty. Bioorg Med Chem Lett. 2019;29(19):126610.
  • Tsagris DJ, Birchall K, Bouloc N, et al. Trisubstituted thiazoles as potent and selective inhibitors of Plasmodium falciparum protein kinase G (PfPKG). Bioorg Med Chem Lett. 2018;28(19):3168–3173.
  • Mahmood SU, Cheng H, Tummalapalli SR, et al. Discovery of isoxazolyl-based inhibitors of Plasmodium falciparum cGMP-dependent protein kinase. RSC Med. Chem. 2020;11(1):98–101.
  • Bheemanaboina RRY, de Souza ML, Gonzalez ML, et al. Discovery of Imidazole-Based Inhibitors of Plasmodium falciparum cGMP-Dependent Protein Kinase. ACS Med Chem Lett. 2021;12(12):1962–1967.
  • Cheuka PM, Centani L, Arendse LB, et al. New Amidated 3,6-Diphenylated Imidazopyridazines with Potent Antiplasmodium Activity Are Dual Inhibitors of Plasmodium Phosphatidylinositol-4-kinase and cGMP-Dependent Protein Kinase. ACS Infect Dis. 2021;7(1):34–46.
  • Green JL, Moon RW, Whalley D, et al. Imidazopyridazine inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 also target cyclic GMP-dependent protein kinase and heat shock protein 90 to kill the parasite at different stages of intracellular development. Antimicrob Agents Chemother. 2016;60(3):1464–1475.
  • Baker DA, Matralis AN, Osborne SA, et al. Targeting the Malaria Parasite cGMP-Dependent Protein Kinase to Develop New Drugs. Front Microbiol. 2020;11:1–8.
  • Rotella D, Siekierka J, Bhanot P. Plasmodium falciparum cGMP-Dependent Protein Kinase – a Novel Chemotherapeutic Target. Front Microbiol. 2021;11:1–7.
  • Maier AG, Rug M, O’Neill MT, et al. Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes. Cell. 2008;134(1):48–61.
  • Droucheau E, Primot A, Thomas V, et al. Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors. Biochim Biophys Acta - Proteins Proteomics. 2004;1697(1–2):181–196.
  • Mundwiler-Pachlatko E, Beck H-P. Maurer’s clefts, the enigma of Plasmodium falciparum. Proc Natl Acad Sci. 2013;110(50):19987–19994.
  • Prinz B, Harvey KL, Wilcke L, et al. Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites. Sci Rep. 2016;6(1):34479.
  • Triglia T, Healer J, Caruana SR, et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706–718.
  • Fugel W, Oberholzer AE, Gschloessl B, et al. 3,6-Diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles Are Selective Inhibitors of Plasmodium falciparum Glycogen Synthase Kinase-3. J Med Chem. 2013;56(1):264–275.
  • Masch A, Kunick C. Selective inhibitors of Plasmodium falciparum glycogen synthase-3 (PfGSK-3): new antimalarial agents? Biochim Biophys Acta - Proteins Proteomics. 2015;1854(10):1644–1649.
  • Masch A, Nasereddin A, Alder A, et al. Structure-activity relationships in a series of antiplasmodial thieno[2,3-b]pyridines. Malar J. 2019;18(1):1–10.
  • Schweda SI, Alder A, Gilberger T, et al. 4-Arylthieno[2,3-b]pyridine-2-carboxamides Are a New Class of Antiplasmodial Agents. Molecules. 2020;25(14):3187.
  • Moolman C, van der Sluis R, Beteck RM, et al. Exploration of benzofuran-based compounds as potent and selective Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) inhibitors. Bioorg Chem. 2021;112:104839.
  • Galal KA, Truong A, Kwarcinski F, et al. Identification of Novel 2,4,5-Trisubstituted Pyrimidines as Potent Dual Inhibitors of Plasmodial PfGSK3/PfPK6 with Activity against Blood Stage Parasites In Vitro. J Med Chem. 2022;65(19):13172–13197.
  • Bracchi-Ricard V, Barik S, DelVecchio C, et al. PfPK6, a novel cyclin-dependent kinase/mitogen-activated protein kinase-related protein kinase from Plasmodium falciparum. Biochem J. 2000;347(1):255.
  • Gamo F-J, Sanz LM, Vidal J, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465(7296):305–310.
  • Crowther GJ, Hillesland HK, Keyloun KR, et al. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds. PLoS One. 2016;11(3):e0149996.
  • Ong HW, Truong A, Kwarcinski F, et al. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. Eur J Med Chem. 2023;249:115043.
  • Moyano PM, Němec V, Paruch K. Cdc-Like Kinases (CLKs): biology, Chemical Probes, and Therapeutic Potential. Int J Mol Sci. 2020;21(20):7549.
  • Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci. 2021;22(11):6047.
  • Agarwal S, Kern S, Halbert J, et al. Two nucleus-localized CDK-like kinases with crucial roles for malaria parasite erythrocytic replication are involved in phosphorylation of splicing factor. J Cell Biochem. 2011;112(5):1295–1310.
  • Kern S, Agarwal S, Huber K, et al. Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission. PLoS One. 2014;9(9):e105732.
  • Bourgeois CF, Lejeune F, Stévenin J. Broad Specificity of SR (Serine/Arginine) Proteins in the Regulation of Alternative Splicing of Pre-Messenger RNA, in. Nucleic Acid Res Mol Biol. 2004;78:37–88.
  • Stamm S. Regulation of Alternative Splicing by Reversible Protein Phosphorylation. J Biol Chem. 2008;283(3):1223–1227.
  • Zhou Z, Fu X-D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma. 2013;122(3):191–207.
  • Talevich E, Mirza A, Kannan N. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol. Biol. 2011;11(1):321.
  • Dellaire G, Makarov EM, Cowger JM, et al. Mammalian PRP4 Kinase Copurifies and Interacts with Components of Both the U5 snRNP and the N-CoR Deacetylase Complexes. Mol Cell Biol. 2002;22(14):5141–5156.
  • Schneider M, Hsiao -H-H, Will CL, et al. Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Nat Struct Mol Biol. 2010;17(2):216–221.
  • Mahindra A, Janha O, Mapesa K, et al. , A. Amambua-Ngwa et al. Development of Potent Pf CLK3 Inhibitors Based on TCMDC-135051 as a New Class of Antimalarials. J Med Chem. 2020;63(17):9300–9315.
  • Swale C, Bellini V, Bowler MW, et al. Altiratinib blocks Toxoplasma gondii and Plasmodium falciparum development by selectively targeting a spliceosome kinase. Sci Transl Med. 2022;14(656):eabn3231.
  • Hui R, El Bakkouri M, Sibley LD. Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans. Trends Pharmacol Sci. 2015;36(7):452–460.
  • Kadian K, Gupta Y, Kempaiah P, et al. Calcium Dependent Protein Kinases (CDPKs): key to Malaria Eradication. Curr Top Med Chem. 2017;17(19):2215–2220.
  • Zhao Y, Kappes B, Franklin RM. Gene structure and expression of an unusual protein kinase from Plasmodium falciparum homologous at its carboxyl terminus with the EF hand calcium-binding proteins. J Biol Chem. 1993;268(6):4347–4354.
  • Zhao Y, Franklin RM, Kappes B. Plasmodium falciparum calcium-dependent protein kinase phosphorylates proteins of the host erythrocytic membrane. Mol Biochem Parasitol. 1994;66(2):329–343.
  • Möskes C, Burghaus PA, Wernli B, et al. Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs. Mol Microbiol. 2004;54(3):676–691.
  • Azevedo MF, Sanders PR, Krejany E, et al. Inhibition of Plasmodium falciparum CDPK1 by conditional expression of its J-domain demonstrates a key role in schizont development. Biochem J. 2013;452(3):433–441.
  • Bansal A, Singh S, More KR, et al. Characterization of Plasmodium falciparum Calcium-dependent Protein Kinase 1 (PfCDPK1) and Its Role in Microneme Secretion during Erythrocyte Invasion. J Biol Chem. 2013;288(3):1590–1602.
  • Green JL, Rees-Channer RR, Howell SA, et al. The Motor Complex of Plasmodium falciparum: phosphorylation by a Calcium-Dependent Protein Kinase. J Biol Chem. 2008;283(45):30980–30989.
  • Thomas DC, Ahmed A, Gilberger TW, et al. Regulation of Plasmodium falciparum Glideosome Associated Protein 45 (PfGAP45) Phosphorylation. PLoS One. 2012;7(4):e35855.
  • Ridzuan MAM, Moon RW, Knuepfer E, et al. Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development. PLoS One. 2012;7(3):e33845.
  • Frénal K, Dubremetz J-F, Lebrun M, et al. Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol. 2017;15(11):645–660.
  • Kumar S, Kumar M, Ekka R, et al. PfCDPK1 mediated signaling in erythrocytic stages of Plasmodium falciparum. Nat Commun. 2017;8(1):63.
  • Bansal A, Molina-Cruz A, Brzostowski J, et al. Pf CDPK1 is critical for malaria parasite gametogenesis and mosquito infection. Proc Natl Acad Sci. 2018;115(4):774–779.
  • Sebastian S, Brochet M, Collins MO, et al. A Plasmodium Calcium-Dependent Protein Kinase Controls Zygote Development and Transmission by Translationally Activating Repressed mRNAs. Cell Host Microbe. 2012;12(1):9–19.
  • Govindasamy K, Bhanot P. Overlapping and distinct roles of CDPK family members in the pre-erythrocytic stages of the rodent malaria parasite, Plasmodium berghei. PLOS Pathog. 2020;16(8):e1008131.
  • Jebiwott S, Govindaswamy K, Mbugua A, et al. Plasmodium berghei Calcium Dependent Protein Kinase 1 Is Not Required for Host Cell Invasion. PLoS One. 2013;8(11):e79171.
  • Lemercier G, Fernandez-Montalvan A, Shaw JP, et al. Identification and Characterization of Novel Small Molecules as Potent Inhibitors of the Plasmodial Calcium-Dependent Protein Kinase 1. Biochemistry. 2009;48(27):6379–6389.
  • Chapman TM, Osborne SA, Bouloc N, et al. Substituted imidazopyridazines are potent and selective inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1). Bioorg Med Chem Lett. 2013;23(10):3064–3069.
  • Ansell KH, Jones HM, Whalley D, et al. Biochemical and Antiparasitic Properties of Inhibitors of the Plasmodium falciparum Calcium-Dependent Protein Kinase PfCDPK1. Antimicrob Agents Chemother. 2014;58(10):6032–6043.
  • Large JM, Osborne SA, Smiljanic-Hurley E, et al. Imidazopyridazines as potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1): preparation and evaluation of pyrazole linked analogues. Bioorganic Med. Chem. Lett. 2013;23(21):6019–6024.
  • Chapman TM, Osborne SA, Wallace C, et al. Optimization of an Imidazopyridazine Series of Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 (PfCDPK1). J Med Chem. 2014;57(8):3570–3587.
  • Bansal A, Ojo KK, Mu J, et al. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G. MBio. 2016;7(6):e02011–16.
  • Kumar S, Haile MT, Hoopmann MR, et al. Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector. MBio. 2021;12(6):605.
  • Ranjan R, Ahmed A, Gourinath S, et al. Dissection of Mechanisms Involved in the Regulation of Plasmodium falciparum Calcium-dependent Protein Kinase 4. J Biol Chem. 2009;284(22):15267–15276.
  • Kato K, Sudo A, Kobayashi K, et al. Characterization of Plasmodium falciparum calcium-dependent protein kinase 4. Parasitol Int. 2009;58(4):394–400.
  • Billker O, Dechamps S, Tewari R, et al. Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite. Cell. 2004;117(4):503–514.
  • Fang H, Klages N, Baechler B, et al. Multiple short windows of calcium-dependent protein kinase 4 activity coordinate distinct cell cycle events during Plasmodium gametogenesis. Elife. 2017;6:1–23.
  • Fang H, Gomes AR, Klages N, et al. E.M. Walker et al. Epistasis studies reveal redundancy among calcium-dependent protein kinases in motility and invasion of malaria parasites. Nat Commun. 2018;9(1):4248.
  • Ojo KK, Pfander C, Mueller NR, et al. Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors. J Clin Invest. 2012;122(6):2301–2305.
  • Ojo KK, Eastman RT, Vidadala R, et al. A Specific Inhibitor of PfCDPK4 Blocks Malaria Transmission: chemical-genetic Validation. J Infect Dis. 2014;209(2):275–284.
  • Vidadala RSR, Ojo KK, Johnson SM, et al. A. Mitra et al. Development of potent and selective Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) inhibitors that block the transmission of malaria to mosquitoes. Eur J Med Chem. 2014;74:562–573.
  • Huang W, Hulverson MA, Zhang Z, et al. 5-Aminopyrazole-4-carboxamide analogues are selective inhibitors of Plasmodium falciparum microgametocyte exflagellation and potential malaria transmission blocking agents. Bioorganic Med. Chem. Lett. 2016;26(22):5487–5491.
  • Van Voorhis WC, Doggett JS, Parsons M, et al. Extended-spectrum antiprotozoal bumped kinase inhibitors: a review. Exp Parasitol. 2017;180(12):71–83.
  • Reininger L, Tewari R, Fennell C, et al. An Essential Role for the Plasmodium Nek-2 Nima-related Protein Kinase in the Sexual Development of Malaria Parasites. J Biol Chem. 2009;284(31):20858–20868.
  • Reininger L, Garcia M, Tomlins A, et al. The Plasmodium falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to sexual differentiation. Malar J. 2012;11(1):250.
  • Dorin D, Semblat J-P, Poullet P, et al. PfPK7, an atypical MEK-related protein kinase, reflects the absence of classical three-component MAPK pathways in the human malaria parasite Plasmodium falciparum. Mol Microbiol. 2005;55(1):184–186.
  • Dorin-Semblat D, Sicard A, Doerig C, et al. Disruption of the PfPK7 Gene Impairs Schizogony and Sporogony in the Human Malaria Parasite Plasmodium falciparum. Eukaryot Cell. 2008;7(2):279–285.
  • Pease BN, Huttlin EL, Jedrychowski MP, et al. Characterization of Plasmodium falciparum Atypical Kinase PfPK7 – dependent Phosphoproteome. J Proteome Res. 2018;17(6):2112–2123.
  • Koyama FC, Ribeiro RY, Garcia JL, et al. Ubiquitin proteasome system and the atypical kinase PfPK7 are involved in melatonin signaling in Plasmodium falciparum. J. Pineal Res. 2012;53(2):147–153.
  • Rezende Lima W, Tessarin-Almeida G, Rozanski A, et al. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer. 2016;7(9–10):323–339.
  • Merckx A, Echalier A, Langford K, et al. Structures of P. falciparum Protein Kinase 7 Identify an Activation Motif and Leads for Inhibitor Design. Structure. 2008;16(2):228–238.
  • Bouloc N, Large JM, Smiljanic E, et al. Synthesis and in vitro evaluation of imidazopyridazines as novel inhibitors of the malarial kinase PfPK7. Bioorg Med Chem Lett. 2008;18(19):5294–5298.
  • Lima MNN, Borba JVB, Cassiano GC, et al. Artificial Intelligence Applied to the Rapid Identification of New Antimalarial Candidates with Dual‐Stage Activity. ChemMedChem. 2021;16(7):1093–1103.
  • Crowther GJ, Napuli AJ, Gilligan JH, et al. Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol Biochem Parasitol. 2011;175(1):21–29.
  • Guiguemde WA, Shelat AA, Bouck D, et al. Chemical genetics of Plasmodium falciparum. Nature. 2010;465(7296):311–315.
  • Avery VM, Bashyam S, Burrows JN, et al. Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum. Malar J. 2014;13(1):1–12.
  • Dorjsuren D, Eastman RT, Wicht KJ, et al. Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Sci Rep. 2021;11(1):2121.
  • Hallyburton I, Grimaldi R, Woodland A, et al. Screening a protein kinase inhibitor library against Plasmodium falciparum. Malar J. 2017;16(1):446.
  • Harmse L, van Zyl R, Gray N, et al. Structure-activity relationships and inhibitory effects of various purine derivatives on the in vitro growth of Plasmodium falciparum. Biochem Pharmacol. 2001;62(3):341–348.
  • Mallari JP, Guiguemde WA, Guy RK. Antimalarial activity of thiosemicarbazones and purine derived nitriles. Bioorg Med Chem Lett. 2009;19(13):3546–3549.
  • Houzé S, Hoang N-T, Lozach O, et al. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, as new anti-malarial agents. Molecules. 2014;19(9):15237–15257.
  • Le Roch K, Sestier C, Dorin D, et al. Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and Cyclin H. J. Biol Chem. 2000;275(12):8952–8958.
  • Phuangsawai O, Beswick P, Ratanabunyong S, et al. Evaluation of the anti-malarial activity and cytotoxicity of 2,4-diamino-pyrimidine-based kinase inhibitors. Eur J Med Chem. 2016;124:896–905.
  • Toviwek B, Phuangsawai O, Konsue A, et al. Preparation, biological & cheminformatics-based assessment of N2,N4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorg Med Chem. 2021;46:116348.
  • Lebar MD, Hahn KN, Mutka T, et al. CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg Med Chem. 2011;19(19):5756–5762.
  • Bharate SB, Yadav RR, Khan SI, et al. Meridianin G and its analogs as antimalarial agents. Medchemcomm. 2013;4(6):1042.
  • Yadav RR, Khan SI, Singh S, et al. Synthesis, antimalarial and antitubercular activities of meridianin derivatives. Eur J Med Chem. 2015;98:160–169.
  • Bharate SB, Yadav RR, Battula S, et al. Meridianins: marine-derived potent kinase inhibitors. mini-reviews med. Chem. 2012;12(7):618–631.
  • Moy B, Kirkpatrick P, Kar S, et al. Lapatinib. Nat Rev Drug Discov. 2007;6(6):431–432.
  • Patel G, Karver CE, Behera R, et al. Kinase scaffold repurposing for neglected disease drug discovery: discovery of an efficacious, lapatanib-derived lead compound for trypanosomiasis. J Med Chem. 2013;56(10):3820–3832.
  • Devine W, Woodring JL, Swaminathan U, et al. Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery. J Med Chem. 2015;58(14):5522–5537.
  • Woodring JL, Patel G, Erath J, et al. Evaluation of aromatic 6-substituted thienopyrimidines as scaffolds against parasites that cause trypanosomiasis, leishmaniasis, and malaria. Medchemcomm. 2015;6(2):339–346.
  • Woodring JL, Bachovchin KA, Brady KG, et al. Optimization of physicochemical properties for 4-anilinoquinazoline inhibitors of trypanosome proliferation. Eur J Med Chem. 2017;141:446–459.
  • Woodring JL, Behera R, Sharma A, et al. Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation. ACS Med Chem Lett. 2018;9(10):996–1001.
  • Devine W, Thomas SM, Erath J, et al. Antiparasitic lead discovery: toward optimization of a chemotype with activity against multiple protozoan parasites. ACS Med Chem Lett. 2017;8(3):350–354.
  • Mehta N, Ferrins L, Leed SE, et al. Optimization of Physicochemical Properties for 4-Anilinoquinoline Inhibitors of Plasmodium falciparum Proliferation. ACS Infect Dis. 2018;4(4):577–591.
  • Ferrins L, Sharma A, Thomas SM, et al. Anilinoquinoline based inhibitors of trypanosomatid proliferation. PLoS Negl Trop Dis. 2018;12(11):e0006834.
  • Bachovchin KA, Sharma A, Bag S, et al. Improvement of aqueous solubility of lapatinib-derived analogues: identification of a quinolinimine lead for human African trypanosomiasis drug development. J Med Chem. 2019;62(2):665–687.
  • Singh B, Bernatchez JA, McCall L-I, et al. Scaffold and Parasite Hopping: discovery of New Protozoal Proliferation Inhibitors. ACS Med Chem Lett. 2020;11(3):249–257.
  • Katiyar S, Kufareva I, Behera R, et al. Lapatinib-Binding protein kinases in the African trypanosome: identification of cellular targets for kinase-directed chemical scaffolds. PLoS One. 2013;8(2):e56150.
  • Adderley JD, John von Freyend S, Jackson SA, et al. Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention. Nat Commun. 2020;11(1):1–13.
  • Prudêncio M, Rodrigues CD, Hannus M, et al. Kinome-Wide RNAi screen implicates at least 5 host hepatocyte kinases in plasmodium sporozoite infection. PLoS Pathog. 2008;4(11):e1000201.
  • Chien HD, Pantaleo A, Kesely KR, et al. Imatinib augments standard malaria combination therapy without added toxicity. J Exp Med. 2021;218(10):1–9.
  • Wei L, Adderley J, Leroy D, et al. Host-directed therapy, an untapped opportunity for antimalarial intervention. Cell Reports Med. 2021;2(10):100423.
  • Adderley J, Grau GE. Host-directed therapies for malaria: possible applications and lessons from other indications. Curr Opin Microbiol. 2023;71:102228.
  • Bendjeddou LZ, Loaëc N, Villiers B, et al. Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor. Eur J Med Chem. 2017;125:696–709.