304
Views
0
CrossRef citations to date
0
Altmetric
Review

Myocarditis: causes, mechanisms, and evolving therapies

ORCID Icon, , &
Pages 225-238 | Received 08 Jan 2023, Accepted 16 Mar 2023, Published online: 22 Mar 2023

References

  • Magnani JW, Dec GW. Myocarditis: current trends in diagnosis and treatment. Circulation. 2006 Feb 14;113(6):876–890.
  • Harris KM, Mackey-Bojack S, Bennett M, et al. Sudden unexpected death due to myocarditis in young people, including athletes. Am J Cardiol. 2021 Mar;143(143):131–134.
  • Zhao L, Fu Z. Roles of host immunity in viral myocarditis and dilated cardiomyopathy. J Immunol Res. 2018;2018:5301548.
  • Molina KM, Garcia X, Denfield SW, et al. Parvovirus B19 myocarditis causes significant morbidity and mortality in children. Pediatr Cardiol. 2013 Feb;34(2):390–397.
  • Ammirati E, Frigerio M, Adler ED, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail. 2020 Nov;13(11):e007405.
  • Matsumori A. Cytokines in myocarditis and cardiomyopathies. Curr Opin Cardiol. 1996 May;11(3):302–309.
  • Gebhard JR, Perry CM, Harkins S, et al. Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but plays no detectable role in virus clearance. Am J Pathol. 1998 Aug;153(2):417–428.
  • Rose NR. Myocarditis: infection versus autoimmunity. J Clin Immunol. 2009 Nov;29(6):730–737.
  • Bajaj S, Dey D, Bhukar R, et al. Non-enveloped virus entry: structural determinants and mechanism of functioning of a viral lytic peptide. J Mol Biol. 2016 Aug 28;428(17):3540–3556.
  • Marsman RF, Bezzina CR, Freiberg F, et al. Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J Am Coll Cardiol. 2014 Feb 18;63(6):549–559.
  • Martino TA, Petric M, Brown M, et al. Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology. 1998 May 10;244(2):302–314.
  • Triantafilou K, Orthopoulos G, Vakakis E, et al. Human cardiac inflammatory responses triggered by coxsackie B viruses are mainly toll-like receptor (TLR) 8-dependent. Cell Microbiol. 2005 Aug;7(8):1117–1126.
  • Mukherjee A, Morosky SA, Delorme-Axford E, et al. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog. 2011 Mar;7(3):e1001311.
  • Nadkarni R, Chu WC, Lee CQE, et al. Viral proteases activate the CARD8 inflammasome in the human cardiovascular system. J Exp Med. 2022 3; 219(10): Oct.
  • Schultz JC, Hilliard AA, Cooper LT Jr., et al. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009 Nov;84(11):1001–1009.
  • Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev. 2013 Nov;18(6):683–702.
  • Lotze U, Egerer R, Tresselt C, et al. Frequent detection of parvovirus B19 genome in the myocardium of adult patients with idiopathic dilated cardiomyopathy. Med Microbiol Immunol. 2004 May;193(2–3):75–82.
  • Schenk T, Enders M, Pollak S, et al. High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol. 2009 Jan;47(1):106–110.
  • Duechting A, Tschope C, Kaiser H, et al. Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J Virol. 2008 Aug;82(16):7942–7952.
  • Lupescu A, Geiger C, Zahir N, et al. Inhibition of Na+/H+ exchanger activity by parvovirus B19 protein NS1. Cell Physiol Biochem. 2009;23(1–3):211–220.
  • Bock C-T, Klingel K, Kandolf R. Human parvovirus B19–associated myocarditis. N Engl J Med. 2010 Apr 1;362(13):1248–1249.
  • Bultmann BD, Klingel K, Sotlar K, et al. Fatal parvovirus B19–associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell–mediated disease. Hum Pathol. 2003 Jan;34(1):92–95.
  • Hu X, Jia C, Wu J, et al. Towards the antiviral agents and nanotechnology-enabled approaches against parvovirus B19. Front Cell Infect Microbiol. 2022;12:916012.
  • Kuhl U, Pauschinger M, Schwimmbeck PL, et al. Interferon-β treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation. 2003 Jun 10;107(22):2793–2798.
  • Daniels CJ, Rajpal S, Greenshields JT, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry. JAMA Cardiol. 2021 Sep 1;6(9):1078–1087.
  • Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020 May;46(5):846–848.
  • Bojkova D, Wagner JUG, Shumliakivska M, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020 Dec 1;116(14):2207–2215.
  • Dinesh DC, Chalupska D, Silhan J, et al. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog. 2020 Dec;16(12):e1009100.
  • Becares M, Pascual-Iglesias A, Nogales A, et al. Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response. J Virol. 2016 Jun 1;90(11):5399–5414.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271–280 e8.
  • Lavie M, Dubuisson J, Belouzard S. SARS-CoV-2 spike furin cleavage site and S2′ basic residues modulate the entry process in a host cell-dependent manner. J Virol. 2022 Jul 13;96(13):e0047422.
  • Bhardwaj A, Sapra L, Saini C, et al. COVID-19: immunology, immunopathogenesis and potential therapies. Int Rev Immunol. 2022;41(2):171–206.
  • Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020 May;10(5):766–788.
  • Ullrich S, Nitsche C. SARS-CoV-2 papain-like protease: structure, function and inhibition. Chembiochem. 2022 Oct 6;23(19):e202200327.
  • Moustaqil M, Ollivier E, Chiu H-P, et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect. 2021 Dec;10(1):178–195.
  • Tian W, Zhang N, Jin R, et al. Immune suppression in the early stage of COVID-19 disease. Nat Commun. 2020 Nov 17;11(1):5859.
  • Shen X-R, Geng R, Li Q, et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther. 2022 Mar 11;7(1):83.
  • Muralidharan A, Wyatt TA, Reid SP. Reid SP. SARS-CoV-2 dysregulates neutrophil degranulation and reduces lymphocyte counts. Biomedicines. 2022 4;10(2):Feb.
  • Jalloh S, Olejnik J, Berrigan J, et al. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. bioRxiv. 2022 Mar 30.
  • Bienvenu LA, Noonan J, Wang X, et al. Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovasc Res. 2020 Dec 1;116(14):2197–2206.
  • Mahrholdt H, Wagner A, Deluigi CC, et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006 Oct 10;114(15):1581–1590.
  • Kuhl U, Lassner D, Wallaschek N, et al. Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail. 2015 Jan;17(1):9–19.
  • Chimenti C, Verardo R, Grande C, et al. Infarct-like myocarditis with coronary vasculitis and aneurysm formation caused by Epstein–Barr virus infection. ESC Heart Failure. 2020 Jun;7(3):938–941.
  • Magno Palmeira M, Umemura Ribeiro HY, Garcia Lira Y, et al. Heart failure due to cytomegalovirus myocarditis in immunocompetent young adults: a case report. BMC Res Notes. 2016 Aug;9(1):391.
  • Ioannou A, Tsappa I, Metaxa S, et al. Ventricular Fibrillation following Varicella Zoster Myocarditis. Case Rep Cardiol. 2017;2017:1017686.
  • Wang W, Cheng T, Zhu H, et al. Insights into the function of tegument proteins from the varicella zoster virus. Sci China Life Sci. 2015 Aug;58(8):739–749.
  • Tigue NJ, Kay J. Autoprocessing and peptide substrates for human herpesvirus 6 proteinase. J Biol Chem. 1998 Oct 9;273(41):26441–26446.
  • Tigue NJ, Matharu PJ, Roberts NA, et al. Cloning, expression and characterization of the proteinase from human herpesvirus 6. J Virol. 1996 Jun;70(6):4136–4141.
  • Ablashi D, Agut H, Alvarez-Lafuente R, et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol. 2014 May;159(5):863–870.
  • Ota M, Serada S, Naka T, et al. MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol. 2014 Feb;58(2):119–125.
  • Romeo MA, Gilardini Montani MS, Benedetti R, et al. The cross-talk between STAT1/STAT3 and ROS up-regulates PD-L1 and promotes the release of pro-inflammatory/immune suppressive cytokines in primary monocytes infected by HHV-6B. Virus Res. 2021 Jan 15;292:198231.
  • Yamada A, Takeichi T, Kiryu K, et al. Fatal human herpes virus 6B myocarditis: postmortem diagnosis of HHV-6B based on CD134+ T-cell tropism. Leg Med (Tokyo). 2022 Feb;54:102007.
  • Otani N, Okuno T. Human herpesvirus 6 infection of CD4+ T-cell subsets. Microbiol Immunol. 2007;51(10):993–1001.
  • Tang H, Serada S, Kawabata A, et al. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9096–9099.
  • Akkapaiboon P, Mori Y, Sadaoka T, et al. Intracellular processing of human herpesvirus 6 glycoproteins Q1 and Q2 into tetrameric complexes expressed on the viral envelope. J Virol. 2004 Aug;78(15):7969–7983.
  • Ogawa H, Fujikura D, Namba H, et al. Nectin-2 acts as a viral entry mediated molecule that binds to human herpesvirus 6B glycoprotein B. Viruses. 2022 16; 14(1): Jan.
  • Tanaka Y, Suenaga T, Matsumoto M, et al. Herpesvirus 6 glycoproteins B (gB), gH, gL, and gQ are necessary and sufficient for cell-to-cell fusion. J Virol. 2013 Oct;87(19):10900–10903.
  • Ashrafpoor G, Andreoletti L, Bruneval P, et al. Fulminant human herpesvirus 6 myocarditis in an immunocompetent adult: role of cardiac magnetic resonance in a multidisciplinary approach. Circulation. 2013 Dec 3;128(23):e445–7.
  • Flamand L. Chromosomal integration by human herpesviruses 6A and 6B. Adv Exp Med Biol. 2018;1045:209–226.
  • Endo A, Watanabe K, Ohye T, et al. Molecular and virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. Clin Infect Dis. 2014 Aug 15;59(4):545–548.
  • Razonable RR, Paya CV. Herpesvirus infections in transplant recipients: current challenges in the clinical management of cytomegalovirus and Epstein-Barr virus infections. Herpes. 2003 Dec;10(3):60–65.
  • Manuel O, Pang XL, Humar A, et al. An assessment of donor-to-recipient transmission patterns of human cytomegalovirus by analysis of viral genomic variants. J Infect Dis. 2009 Jun 1;199(11):1621–1628.
  • Martinez-Martin N, Marcandalli J, Huang CS, et al. An unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell. 2018 Aug 23;174(5):1158–1171 e19.
  • Vanarsdall AL, Pritchard SR, Wisner TW, et al. CD147 promotes entry of pentamer-expressing human cytomegalovirus into epithelial and endothelial cells. mBio. 2018 May 8;9(3). DOI:10.1128/mBio.00781-18.
  • Streck NT, Zhao Y, Sundstrom JM, et al. Human cytomegalovirus utilizes extracellular vesicles to enhance virus spread. J Virol. 2020 Jul 30;94(16). 10.1128/JVI.00609-20.
  • Forte E, Zhang Z, Thorp EB, et al. Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response. Front Cell Infect Microbiol. 2020;10:130.
  • Burck PJ, Berg DH, Luk TP, et al. Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites. J Virol. 1994 May;68(5):2937–2946.
  • Shieh H-S, Kurumbail RG, Stevens AM, et al. Three-dimensional structure of human cytomegalovirus protease. Nature. 1996 Sep 19;383(6597):279–282.
  • Wang J, Okazaki I-M, Yoshida T, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010 Jun;22(6):443–452.
  • Love VA, Grabie N, Duramad P, et al. CTLA-4 ablation and interleukin-12–driven differentiation synergistically augment cardiac pathogenicity of cytotoxic t lymphocytes. Circ Res. 2007 Aug 3;101(3):248–257.
  • Moslehi JJ, Salem J-E, Sosman JA, et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018 Mar 10;391(10124):933.
  • D’Souza M, Nielsen D, Svane IM, et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: a nationwide Danish study. Eur Heart J. 2021 Apr 21;42(16):1621–1631.
  • Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016 Nov 3;375(18):1749–1755.
  • Martinez-Calle N, Rodriguez-Otero P, Villar S, et al. Anti-PD1 associated fulminant myocarditis after a single pembrolizumab dose: the role of occult pre-existing autoimmunity. Haematologica. 2018 Jul;103(7):e318–e321.
  • Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006 Dec;6(12):940–952.
  • Matzen E, Bartels LE, Logstrup B, et al. Immune checkpoint inhibitor-induced myocarditis in cancer patients: a case report and review of reported cases. Cardio-oncology (London, England). 2021 Aug 9;7(1):27.
  • Li H, Dai Z, Wang B, et al. A case report of eosinophilic myocarditis and a review of the relevant literature. BMC Cardiovasc Disord. 2015 Feb 26;15(1):15.
  • Sheikh H, Siddiqui M, Uddin SMM, et al. The Clinicopathological Profile of Eosinophilic Myocarditis. Cureus. 2018 Dec 3;10(12):e3677.
  • Diny NL, Hou X, Barin JG, et al. Macrophages and cardiac fibroblasts are the main producers of eotaxins and regulate eosinophil trafficking to the heart. Eur J Immunol. 2016 Dec;46(12):2749–2760.
  • deMello DE, Liapis H, Jureidini S, et al. Cardiac localization of eosinophil-granule major basic protein in acute necrotizing myocarditis. N Engl J Med. 1990 Nov 29;323(22):1542–1545.
  • Song T, Jones DM, Homsi Y. Therapeutic effect of anti-IL-5 on eosinophilic myocarditis with large pericardial effusion. BMJ Case Rep. 2017 May;24:2017.
  • Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009 Dec;21(12):1303–1309.
  • Diny NL, Baldeviano GC, Talor MV, et al. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J Exp Med. 2017 Apr 3;214(4):943–957.
  • Okura Y, Dec GW, Hare JM, et al. A clinical and histopathologic comparison of cardiac sarcoidosis and idiopathic giant cell myocarditis. J Am Coll Cardiol. 2003 Jan 15;41(2):322–329.
  • Kittleson MM, Minhas KM, Irizarry RA, et al. Gene expression in giant cell myocarditis: altered expression of immune response genes. Int J Cardiol. 2005 Jul 10;102(2):333–340.
  • Cooper LT Jr., Berry GJ, Shabetai R. Idiopathic giant-cell myocarditis — natural history and treatment. N Engl J Med. 1997 Jun 26;336(26):1860–1866.
  • Cooper LT Jr., Hare JM, Tazelaar HD, et al. Usefulness of immunosuppression for giant cell myocarditis. Am J Cardiol. 2008 Dec 1;102(11):1535–1539.
  • Majhen D, Calderon H, Chandra N, et al. Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Hum Gene Ther. 2014 Apr;25(4):301–317.
  • Kaur SP, Gupta V. COVID-19 Vaccine: a comprehensive status report. Virus Res. 2020 Oct 15;288:198114.
  • Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19–related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020 Sep;17(9):1463–1471.
  • Voleti N, Reddy SP, Ssentongo P. Myocarditis in SARS-CoV-2 infection vs. COVID-19 vaccination: a systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:951314.
  • Schagen FHE, Ossevoort M, Toes REM, et al. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol. 2004 Apr;50(1):51–70.
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021 Feb 20;397(10275):671–681.
  • Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021 Jan;21(1):39–51.
  • Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA. 2020 Sep 8;324(10):951–960.
  • Behera P, Singh AK, Subba SH, et al. Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India. Hum Vaccin Immunother. 2022 Dec 31;18(1):2034456.
  • Momin T, Kansagra K, Patel H, et al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine. 2021 Aug;38:101020.
  • Martin JE, Louder MK, Holman LA, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008 Nov 25;26(50):6338–6343.
  • Khobragade A, Bhate S, Ramaiah V, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet. 2022 Apr 2;399(10332):1313–1321.
  • Rouf NZ, Biswas S, Tarannum N, et al., Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol. 2022. 19(1): 386–410.
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022 May;23(5):265–280.
  • Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Drugs. 2021 Mar;81(4):495–501.
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021 Feb 4;384(5):403–416.
  • Dickey JB, Albert E, Badr M, et al. A series of patients with myocarditis following SARS-CoV-2 vaccination with mRNA-1279 and BNT162b2. JACC Cardiovasc Imaging. 2021 Sep;14(9):1862–1863.
  • Pollock KM, Cheeseman HM, Szubert AJ, et al. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine. 2022 Feb;44:101262.
  • Henke A, Jarasch N, Wutzler P. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis. Expert Rev Vaccines. 2008 Dec;7(10):1557–1567.
  • Stone VM, Hankaniemi MM, Laitinen OH, et al. A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Sci Adv. 2020 May;6(19):eaaz2433.
  • Zhang L, Parham NJ, Zhang F, et al. Vaccination with coxsackievirus B3 virus-like particles elicits humoral immune response and protects mice against myocarditis. Vaccine. 2012 Mar 16;30(13):2301–2308.
  • Mohsen MO, Zha L, Cabral-Miranda G, et al. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017 Dec;34:123–132.
  • Lasrado N, Gangaplara A, Massilamany C, et al. Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Sci Rep. 2021 Jun 14;11(1):12432.
  • Gaaloul I, Riabi S, Harrath R, et al. Coxsackievirus B detection in cases of myocarditis, myopericarditis, pericarditis and dilated cardiomyopathy in hospitalized patients. Mol Med Rep. 2014 Dec;10(6):2811–2818.
  • Hankaniemi MM, Stone VM, Andrejeff T, et al. Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Res. 2019 Nov;171:104595.
  • Wang B, Hara K, Kawabata A, et al. Tetrameric glycoprotein complex gH/gL/gQ1/gQ2 is a promising vaccine candidate for human herpesvirus 6B. PLoS Pathog. 2020 Jul;16(7):e1008609.
  • Liu Y, Freed DC, Li L, et al. A replication-defective human cytomegalovirus vaccine elicits humoral immune responses analogous to those with natural infection. J Virol. 2019 Dec 1;93(23). DOI:10.1128/JVI.00747-19.
  • Cui X, Snapper CM. Development of novel vaccines against human cytomegalovirus. Hum Vaccin Immunother. 2019;15(11):2673–2683.
  • Britt WJ, Vugler L, Butfiloski EJ, et al. Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-recombinant vaccinia virus-infected cells in analysis of the human neutralizing antibody response. J Virol. 1990 Mar;64(3):1079–1085.
  • Baraniak I, Gomes AC, Sodi I, et al. Seronegative patients vaccinated with cytomegalovirus gB-MF59 vaccine have evidence of neutralising antibody responses against gB early post-transplantation. EBioMedicine. 2019 Dec;50:45–54.
  • Perotti M, Marcandalli J, Demurtas D, et al. Rationally designed human cytomegalovirus gB nanoparticle vaccine with improved immunogenicity. PLoS Pathog. 2020 Dec;16(12):e1009169.
  • Nelson CS, Jenks JA, Pardi N, et al. Human cytomegalovirus glycoprotein B nucleoside-modified mRNA vaccine elicits antibody responses with greater durability and breadth than MF59-adjuvanted gB protein immunization. J Virol. 2020 Apr 16;94(9). DOI:10.1128/JVI.00186-20.
  • Dasari V, Beckett K, Horsefield S, et al. A bivalent CMV vaccine formulated with human compatible TLR9 agonist CpG1018 elicits potent cellular and humoral immunity in HLA expressing mice. PLoS Pathog. 2022 Jun;18(6):e1010403.
  • Arora P, Kempf A, Nehlmeier I, et al. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect Dis. 2023;23(1):22–23. DOI:10.1016/S1473-3099(22)00733-2.
  • Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93–116.
  • Chi X, Yan R, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science. 2020 Aug 7;369(6504):650–655.
  • Hussain A, Hasan A, Nejadi Babadaei MM, et al. Targeting SARS-CoV2 spike protein receptor binding domain by therapeutic antibodies. Biomed Pharmacother. 2020 Oct;130:110559.
  • Sheward DJ, Kim C, Fischbach J, et al. Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising antibodies. Lancet Infect Dis. 2022 Nov;22(11):1538–1540.
  • Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020 Sep 3;182(5):1284–1294 e9.
  • Phanthong S, Densumite J, Seesuay W, et al. Human antibodies to VP4 inhibit replication of enteroviruses across subgenotypes and serotypes, and enhance host innate immunity. Front Microbiol. 2020;11:562768.
  • Shingler KL, Yoder JL, Carnegie MS, et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog. 2013 Mar;9(3):e1003240.
  • Wang B, Nishimura M, Maekawa Y, et al. Humanization of murine neutralizing antibodies against human herpesvirus 6B. J Virol. 2019 May 15;93(10). DOI:10.1128/JVI.02270-18.
  • Kawabata A, Oyaizu H, Maeki T, et al. Analysis of a neutralizing antibody for human herpesvirus 6B reveals a role for glycoprotein Q1 in viral entry. J Virol. 2011 Dec;85(24):12962–12971.
  • Bonaros N, Mayer B, Schachner T, et al. CMV-hyperimmune globulin for preventing cytomegalovirus infection and disease in solid organ transplant recipients: a meta-analysis. Clin Transplant. 2008 Jan-Feb;22(1):89–97.
  • Nguyen CC, Kamil JP. Pathogen at the gates: human cytomegalovirus entry and cell tropism. Viruses. 2018 Dec 11;10(12). 10.3390/v10120704.
  • Wille PT, Wisner TW, Ryckman B, et al. Human cytomegalovirus (HCMV) glycoprotein gB promotes virus entry in trans acting as the viral fusion protein rather than as a receptor-binding protein. mBio. 2013 Jun 4;4(3):e00332–13.
  • Maertens J, Logan AC, Jang J, et al. Phase 2 study of anti-human cytomegalovirus monoclonal antibodies for prophylaxis in hematopoietic cell transplantation. Antimicrob Agents Chemother. 2020 Mar 24;64(4). 10.1128/AAC.02467-19.
  • Parsons AJ, Ophir SI, Duty JA, et al. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol. 2022 Apr 25;5(1):387.
  • Gao Y, Yan L, Huang Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020 May 15;368(6492):779–782.
  • Tian L, Qiang T, Liang C, et al. RNA-dependent RNA polymerase (RdRp) inhibitors: the current landscape and repurposing for the COVID-19 pandemic. Eur J Med Chem. 2021 Mar 5;213:113201.
  • Xu X, Chen Y, Lu X, et al. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: promises and challenges. Biochem Pharmacol. 2022 Nov;205:115279.
  • Abdelnabi R, Morais ATS, Leyssen P, et al. Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 Motif of the viral polymerase. J Virol. 2017 Jun 15;91:12.
  • Sofia MJ, Chang W, Furman PA, et al. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem. 2012 Mar 22;55(6):2481–2531.
  • Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: structures, functions and inhibitors. Virus Res. 2017 Apr;234(234):177–192.
  • Lenzo JC, Shellam GR, Lawson CM. Ganciclovir and cidofovir treatment of cytomegalovirus-induced myocarditis in mice. Antimicrob Agents Chemother. 2001 May;45(5):1444–1449.
  • Saraca LM, Lazzari L, Di Giuli C, et al. Cytomegalovirus myocarditis in a patient with systemic lupus erythematosus (SLE) successfully treated with ganciclovir. IDCases. 2018;12:4–6.
  • Hantz S, Garnier-Geoffroy F, Mazeron M-C, et al. Drug-resistant cytomegalovirus in transplant recipients: a French cohort study. J Antimicrob Chemother. 2010 Dec;65(12):2628–2640.
  • Linder KA, Kovacs C, Mullane KM, et al. Letermovir treatment of cytomegalovirus infection or disease in solid organ and hematopoietic cell transplant recipients. Transpl Infect Dis. 2021 Aug;23(4):e13687.
  • Toomey D, Phan TL, Nguyen V, et al. Retrospective case analysis of antiviral therapies for HHV-6 encephalitis after hematopoietic stem cell transplantation. Transpl Infect Dis. 2021 Feb;23(1):e13443.
  • Ljungman P. Is antiviral therapy against HHV-6B beneficial? Blood. 2020 Apr 23;135(17):1413–1414.
  • Anderson J, Schiffer C, Lee SK, et al. Viral protease inhibitors. Handb Exp Pharmacol. 2009;189(189):85–110.
  • Chia CSB, Xu W, Shuyi NP. A patent review on SARS coronavirus main protease (3CL pro) inhibitors. ChemMedChem. 2022 Jan 5;17(1):e202100576.
  • Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19. N Engl J Med. 2022 Apr 14;386(15):1397–1408.
  • Mukae H, Yotsuyanagi H, Ohmagari N, et al. A randomized phase 2/3 study of ensitrelvir, a novel oral SARS-CoV-2 3C-like protease inhibitor, in Japanese patients with mild-to-moderate COVID-19 or asymptomatic SARS-CoV-2 infection: results of the phase 2a part. Antimicrob Agents Chemother. 2022 Oct 18;66(10):e0069722.
  • Iketani S, Mohri H, Culbertson B, et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature. 2023;6113(7944):558–56. DOI:10.1038/s41586-022-05514-2.
  • Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020 Nov;587(7835):657–662.
  • Ma C, Wang J. Validation and invalidation of SARS-CoV-2 papain-like protease inhibitors. ACS Pharmacol Transl Sci. 2022 Feb 11;5(2):102–109.
  • Palmenberg AC. Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol. 1990;44(1):603–623.
  • Becker D, Kaczmarska Z, Arkona C, et al. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Nat Commun. 2016 Sep 28;7(1):12761.
  • Yun S-H, Lee WG, Kim Y-C, et al. Antiviral activity of coxsackievirus B3 3C protease inhibitor in experimental murine myocarditis. J Infect Dis. 2012 Feb 1;205(3):491–497.
  • Hulce KR, Jaishankar P, Lee GM, et al. Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Cell Chem Biol. 2022 May 19;29(5):785–798 e19.
  • Gable JE, Acker TM, Craik CS. Current and potential treatments for ubiquitous but neglected herpesvirus infections. Chem Rev. 2014 Nov 26;114(22):11382–11412.
  • Zhu H, Galdos FX, Lee D, et al. Identification of pathogenic immune cell subsets associated with checkpoint inhibitor–induced myocarditis. Circulation. 2022 Jul 26;146(4):316–335.
  • Axelrod ML, Meijers WC, Screever EM, et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature. 2022 Nov;611(7937):818–826.
  • Hinrichs CS, Palmer DC, Rosenberg SA, et al. Glucocorticoids do not inhibit antitumor activity of activated CD8+ T cells. J Immunother. 2005 Nov-Dec;28(6):517–524.
  • Molina-Ramos AI, Gomez-Moyano E, Rodriguez-Capitan J, et al. Myocarditis related to COVID-19 and SARS-CoV-2 vaccination. J Clin Med. 2022 Nov 26;11(23):6999.
  • Hansen SG, Powers CJ, Richards R, et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science. 2010 Apr 2;328(5974):102–106.
  • Kawada M, Inoue H, Kajikawa M, et al. A novel monoclonal antibody targeting coxsackie virus and adenovirus receptor inhibits tumor growth in vivo. Sci Rep. 2017 Jan;7(1):40400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.