207
Views
0
CrossRef citations to date
0
Altmetric
Review

Navigating the landscape of psoriasis therapy: novel targeted pathways and emerging trends

, , &
Pages 1247-1256 | Received 22 Oct 2023, Accepted 22 Nov 2023, Published online: 28 Nov 2023

References

  • Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. MDPI AG, Mar. 02. doi: 10.3390/ijms20061475
  • Parisi R, Symmons DPM, Griffiths CEM, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385. doi: 10.1038/jid.2012.339
  • Tomar Y, Gorantla S, Singhvi G. Insight into the pivotal role of signaling pathways in psoriasis pathogenesis, potential therapeutic molecules and drug delivery approaches. Drug Discovery Today. 2023;28(2):Feb. 01. doi: 10.1016/j.drudis.2022.103465
  • Ogawa E, Sato Y, Minagawa A, et al. Pathogenesis of psoriasis and development of treatment. J Dermatol. 2018;45(3):264–272. doi: 10.1111/1346-8138.14139
  • Singh JA, Guyatt G, Ogdie A, et al. American college of rheumatology/national psoriasis foundation guideline for the treatment of psoriatic arthritis. J Psoriasis Psoriatic Arthritis. 2018 Jan. 1, 2019;4(1):31–58. doi: 10.1177/2475530318812244. SAGE Publications Ltd.
  • Hari G, Kishore A, Karkala SRP. Treatments for psoriasis: a journey from classical to advanced therapies. How far have we reached? In: European journal of pharmacologyVol. 929. Elsevier B.V;Aug. 15, 2022. doi: 10.1016/j.ejphar.2022.175147.
  • Rapalli VK, Tomar Y, Sharma S, et al. Apremilast loaded lyotropic liquid crystalline nanoparticles embedded hydrogel for improved permeation and skin retention: an effective approach for psoriasis treatment. Biomed Pharmacother. 2023 Jun;162:114634. doi: 10.1016/j.biopha.2023.114634.
  • Tomar Y, Pandit N, Priya S, et al. Evolving trends in nanofibers for topical delivery of therapeutics in skin disorders. ACS Omega. May 30, 2023;8(21): 18340–18357. American Chemical Society. doi: 10.1021/acsomega.3c00924
  • Nestle FO, Di Meglio P, Qin JZ, et al. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–691. doi: 10.1038/nri2622
  • Rapalli VK, Singhvi G, Dubey SK, et al.Emerging landscape in psoriasis management: from topical application to targeting biomoleculesBiomedicine and pharmacotherapyVol. 106Elsevier Masson SASp. 707–713Oct. 1, 2018. doi: 10.1016/j.biopha.2018.06.136
  • Ni X, Lai Y. Keratinocyte: a trigger or an executor of psoriasis? J Leukoc Biol. 108(2): John Wiley and Sons Inc:485–491. Aug. 1, 2020. doi: 10.1002/JLB.5MR0120-439R
  • Afonina IS, Nuffel EV, Baudelet G, et al. The paracaspase MALT 1 mediates CARD 14‐induced signaling in keratinocytes. EMBO Rep. 2016;17(6):914–927. doi: 10.15252/embr.201642109
  • Pradyuth S, Rapalli VK, Gorantla S, et al. Insightful exploring of microRnas in psoriasis and its targeted topical delivery. Dermatol Ther. 2020 Nov;33(6). doi: 10.1111/DTH.14221.
  • Rapalli VK, Waghule T, Gorantla S, et al. Psoriasis: pathological mechanisms, current pharmacological therapies, and emerging drug delivery systems. Drug Discovery Today. 2020 Dec 01;25(12):2212–2226. doi:10.1016/j.drudis.2020.09.023.
  • Torsekar R, Gautam M. Topical therapies in psoriasis. Indian Dermatol Online J. 2017;8(4):235. doi: 10.4103/2229-5178.209622
  • Balato A, Scala E, Eyerich K, et al. Management of infections in psoriatic patients treated with systemic therapies: a lesson from the immunopathogenesis of psoriasis. Dermatology Practical And Conceptual. 2023 Jan 01;13(1):e2023016. doi:10.5826/dpc.1301a16. Mattioli1885
  • Esser C, Rannug A, Ma Q. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev. 2015;67(2):259–279. doi:10.1124/pr.114.009001
  • Esser C, Bargen I, Weighardt H, et. al. Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol. 2013 Nov;35(6):677–691. doi: 10.1007/s00281-013-0394-4
  • Sutter CH, Olesen KM, Bhuju J.et. al. AHR regulates metabolic reprogramming to promote SIRT1-dependent keratinocyte differentiation. J Invest Dermatol. 2019;139(4):818–826. doi: 10.1016/j.jid.2018.10.019
  • Furue M, Uchi H, Mitoma C.et. al. Antioxidants for healthy skin: the emerging role of aryl hydrocarbon receptors and nuclear factor-erythroid 2-related factor-2. Nutrients. 2017;9(3):12–15. doi: 10.3390/nu9030223
  • Furue M, Tsuji G, Mitoma C.et al. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J Dermatol Sci. 2015;80(2):83–88. doi: 10.1016/j.jdermsci.2015.07.011
  • Quintana FJ, Sherr DH, Insel PA. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev. 2013;65(4):1148–1161. doi:10.1124/pr.113.007823
  • Smith SH, Jayawickreme C, Rickard DJ. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans.et al. J Invest Dermatol. 2017;137(10):2110–2119. doi: 10.1016/j.jid.2017.05.004
  • Bergboer JGM, Zeeuwen PLJM, Schalkwijk J. Genetics of psoriasis: evidence for epistatic interaction between skin barrier abnormalities and immune deviation. J Invest Dermatol. 2012;132(10):2320–2331. doi:10.1038/jid.2012.167
  • Di Meglio P, Duarte JH, Ahlfors H.et. al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity. 2014 Jun;40(6):989–1001. doi: 10.1016/j.immuni.2014.04.019.
  • Tsuji G, Takahara M, Uchi H.et. al. Identification of ketoconazole as an AhR-Nrf2 activator in cultured human keratinocytes: the basis of its anti-inflammatory effect. J Invest Dermatol. 2012;132(1):59–68. doi: 10.1038/jid.2011.194
  • Tian C, Zhang G, Xia Z.et. al. Identification of triazolopyridine derivatives as a new class of AhR agonists and evaluation of anti-psoriasis effect in a mouse model. Eur J Med Chem. 2022 Mar;231:114122. doi: 10.1016/j.ejmech.2022.114122
  • Lebwohl MG, Gold LS, Strober B.et. al. Phase 3 trials of Tapinarof cream for plaque psoriasis. N Engl J Med. 2021 Dec;385(24):2219–2229. doi: 10.1056/nejmoa2103629.
  • Talme T, Liu Z, Sundqvist KG. The neuropeptide calcitonin gene-related peptide (CGRP) stimulates T cell migration into collagen matrices. J Neuroimmunol. 2008;196(1–2):60–66. doi: 10.1016/j.jneuroim.2008.02.007
  • Park KA, Fehrenbacher JC, Thompson EL, et al. Signaling pathways that mediate nerve growth factor-induced increase in expression and release of calcitonin gene-related peptide from sensory neurons. Neuroscience. 2010 Dec;171(3):910–923. doi: 10.1016/j.neuroscience.2010.09.027
  • Huang J, Stohl LL, Zhou X, et al. Calcitonin gene-related peptide inhibits chemokine production by human dermal microvascular endothelial cells. Brain Behav Immun. 2011 May;25(4):787–799. doi: 10.1016/j.bbi.2011.02.007
  • Zhao YL, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017 Oct;138:72–82. doi: 10.1016/j.actamat.2017.07.029
  • Qin B, Sun C, Chen L, et al. The nerve injuries attenuate the persistence of psoriatic lesions. J Dermatol Sci. 2021;102(2):85–93. doi: 10.1016/j.jdermsci.2021.02.006
  • Zhang X, He Y. The role of nociceptive neurons in the pathogenesis of psoriasis. Front Immunol. 2020;11. doi: 10.3389/fimmu.2020.01984
  • Granstein RD, Wagner JA, Stohl LL, et al. Calcitonin gene-related peptide: Key regulator of cutaneous immunity. Acta Physiol. 2015;213(3):586–594. doi: 10.1111/apha.12442
  • Zhu TH, Nakamura M, Farahnik B, et al. The role of the nervous system in the pathophysiology of psoriasis: a review of cases of psoriasis remission or improvement following denervation injury. Am J Clin Dermatol. 2016;17(3):257–263. doi: 10.1007/s40257-016-0183-7
  • Padro CJ, Sanders VM. Neuroendocrine regulation of inflammation. Semin Immunol. 2014;26(5):357–368. doi: 10.1016/j.smim.2014.01.003
  • Lipton RB, Croop R, Stock EG, et al. Rimegepant, an oral calcitonin gene–related peptide receptor antagonist, for Migraine. N Engl J Med. 2019;381(2):142–149. doi: 10.1056/nejmoa1811090
  • Martelletti P, Giamberardino MA. Advances in orally administered pharmacotherapy for the treatment of migraine. Expert Opin Pharmacother. 2019;20(2):209–218. doi: 10.1080/14656566.2018.1549223
  • Magni G, Ceruti S. Adenosine signaling in autoimmune disorders. Pharmaceuticals. Sep. 1, 2020;13(9):1–22. doi: 10.3390/ph13090260. MDPI AG, pp.
  • Yiyun C, Na M, Tongwen X, et al. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007;96(3):595–602. doi: 10.1002/jps.20745
  • Antonioli L, Csoka B, Fornai M, et al. Adenosine and inflammation: what’s new on the horizon? Drug Discovery Today. 2014;19(8):1051–1068. doi: 10.1016/j.drudis.2014.02.010. Elsevier Ltd
  • Cohen S, Barer F, Itzhak I, et al. Inhibition of IL-17 and IL-23 in human keratinocytes by the A3 adenosine receptor agonist piclidenoson. J Immunol Res 2018;2018:1–8. doi: 10.1155/2018/2310970
  • Koscsó B, Csóka B, Pacher P, et al. Investigational A3 adenosine receptor targeting agents. Expert Opin Investig Drugs. 2011 Jun;20(6):757–768. doi: 10.1517/13543784.2011.573785
  • Cohen S, Fishman P. Targeting the a 3 adenosine receptor to treat cytokine release syndrome in cancer immunotherapy. Drug Des Devel Ther. 2019;13:491–497. doi:10.2147/DDDT.S195294
  • Lee JY, Jhun BS, Oh YT, et al. Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α production through inhibition of PI 3-kinase/Akt and NF-κB activation in murine BV2 microglial cells. Neurosci Lett. 2006;396(1):1–6. doi: 10.1016/j.neulet.2005.11.004
  • Haskó G, Németh ZH, Vizi ES, et al. An agonist of adenosine A3 receptors decreases interleukin-12 and interferon-γ production and prevents lethality in endotoxemic mice. Eur J Pharmacol. 1998;358(3):261–268. doi: 10.1016/S0014-2999(98)00619-0
  • David M, Rabin M, “A Phase 3 randomized, Double-blind, placebo- and active-controlled study of the efficacy and safety of daily CF101 administered orally in patients with moderate-to-severe plaque psoriasis,” May 2017.
  • Christofferson DE, Li Y, Zhou W, et al. A novel role for RIP1 kinase in mediating TNFα production. Cell Death Dis. 2012 Jun;3(6):e320–e320. doi: 10.1038/cddis.2012.64
  • Dannappel M, Vlantis K, Kumari S, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513(7516):90–94. doi: 10.1038/nature13608
  • Harris PA, Berger SB, Jeong JU, et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 2017 Feb;60(4):1247–1261. doi: 10.1021/acs.jmedchem.6b01751
  • LeRoy G, Rickards B, Flint SJ. The Double Bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell. 2008 Apr;30(1):51–60. doi: 10.1016/j.molcel.2008.01.018
  • Moon KJ, Mochizuki K, Zhou M, et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell. 2005 Aug;19(4):523–534. doi: 10.1016/j.molcel.2005.06.027
  • Wang N, Wu R, Tang D, et al. The BET family in immunity and disease. Signal Transduct Ther. Dec. 1, 2021;6(1). Springer Nature. doi: 10.1038/s41392-020-00384-4
  • Gilan O, Rioja I, Knezevic K, et al. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science. 2020 Apr;368(6489):387–394. doi: 10.1126/science.aaz8455. (1979).
  • Larsen L, Chen HY, Saegusa J, et al. Galectin-3 and the skin. J Dermatol Sci. 2011 Nov;64(2):85–91. doi: 10.1016/j.jdermsci.2011.07.008
  • Sciacchitano S, Lavra L, Morgante A, et al. Galectin-3: one molecule for an alphabet of diseases, from a to Z. Int J Mol Sci. Feb. 1, 2018;19(2): 379. MDPI AG. doi: 10.3390/ijms19020379.
  • Pasmatzi E, Papadionysiou C, Monastirli A, et al. Galectin 3: an extraordinary multifunctional protein in dermatology. Current knowledge and perspectives. An Bras Dermatol. May 1, 2019;94(3):348–354. Sociedade Brasileira de Dermatologia. doi: 10.1590/abd1806-4841.20198426
  • Curti BD, Koguchi Y, Leidner RS, et al. Enhancing clinical and immunological effects of anti-PD-1 with belapectin, a galectin-3 inhibitor. J Immunother Cancer. 2021 Apr;9(4). doi: 10.1136/jitc-2021-002371
  • Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011 Jun;11(6):403–415. doi: 10.1038/nri2974
  • Dobrosotskaya IY, Seegmiller AC, Brown MS, et al., “Regulation of SREBP processing and membrane lipid production by phospholipids in drosophila.” [Online]. Available: www.sciencemag.org
  • Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008 Oct;8(10):753–763. doi: 10.1038/nri2400
  • Zhao Y, Zhang Y, Li J, et al. Pathogenic sphingosine 1-phosphate pathway in psoriasis: a critical review of its pathogenic significance and potential as a therapeutic target. Lipids Health Dis. Dec. 1, 2023;22(1). BioMed Central Ltd. doi: 10.1186/s12944-023-01813-3
  • Schaper K, Dickhaut J, Japtok L, et al. Sphingosine-1-phosphate exhibits anti-proliferative and anti-inflammatory effects in mouse models of psoriasis. J Dermatol Sci. 2013 Jul;71(1):29–36. doi: 10.1016/j.jdermsci.2013.03.006
  • “A Phase IIa, multicentre, randomised, Double-blind, parallel group, placebo-controlled study to evaluate safety, tolerability and clinical efficacy of MT-1303 in subjects with moderate to severe chronic plaque psoriasis,” Sep. 2013.
  • Saleem S, Iqubal MK, Garg S, et al. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv. 2020 Jun;17(6):817–838. doi: 10.1080/17425247.2020.1758665
  • Papp KA, Griffiths CEM, Gordon K, et al. Long‐term safety of ustekinumab in patients with moderate‐to‐severe psoriasis: final results from 5 years of follow‐up. Br J Dermatol. 2013 Apr;168(4):844–854. doi: 10.1111/BJD.12214
  • Chiricozzi A, Krueger JG. IL-17 targeted therapies for psoriasis. Expert Opin Investig Drugs. 2013 Aug;22(8):993–1005. doi: 10.1517/13543784.2013.806483
  • Seminara N, Gelfand JM. Assessing long term Drug safety: lessons (re) learned from raptiva. Semin Cutan Med Surg. 2010;29(1):16–19. doi:10.1016/j.sder.2010.01.001
  • Jensen P, Skov L, Zachariae C. Systemic combination treatment for psoriasis: a review. Society for the Publication of Acta Dermato-Venereologica Acta Derm Venereol. 2010;90(4):341–349. doi: 10.2340/00015555-0905
  • Gomes GS, Frank LA, Contri RV, et al. Nanotechnology-based alternatives for the topical delivery of immunosuppressive agents in psoriasis. Int J Pharm. 2023 Jan;631:122535. doi: 10.1016/j.ijpharm.2022.122535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.