261
Views
0
CrossRef citations to date
0
Altmetric
Review

XBP1 as a novel molecular target to attenuate drug resistance in hepatocellular carcinoma

, , &
Pages 1207-1215 | Received 13 Sep 2023, Accepted 07 Dec 2023, Published online: 11 Dec 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Grgurevic I, Bozin T, Mikus M, et al. Hepatocellular carcinoma in non-alcoholic fatty liver disease: from epidemiology to diagnostic approach. Cancers (Basel). 2021 Nov 21;13(22):5844. doi: 10.3390/cancers13225844
  • Suresh D, Srinivas AN, Prashant A, et al. Therapeutic options in hepatocellular carcinoma: a comprehensive review. Clin Exp Med. 2023;23(6):1901–1916. doi: 10.1007/s10238-023-01014-3
  • Shokoohian B, Negahdari B, Aboulkheyr Es H, et al. Advanced therapeutic modalities in hepatocellular carcinoma: novel insights. J Cell Mol Med. 2021 Sep;25(18):8602–8614. doi: 10.1111/jcmm.16875
  • Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int. 2018;18(1):44. doi: 10.1186/s12935-018-0538-7
  • Zhang J, Guo J, Yang N, et al. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis. 2022;13(12):1051. doi: 10.1038/s41419-022-05444-x
  • Shahriari-Felordi M, Alikhani HK, Hashemian S-M, et al. Mini review ATF4 and GRP78 as novel molecular targets in ER-Stress modulation for critical COVID-19 patients. Mol Biol Rep. 2022 Feb;49(2):1545–1549. doi: 10.1007/s11033-021-07071-9
  • Park SM, Kang T Il, So JS. Roles of XBP1s in transcriptional regulation of target genes. Biomedicines. 2021;9(7):1–26. doi: 10.3390/biomedicines9070791
  • Pavlović N, Calitz C, Thanapirom K, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. Postovit L-M, Ojala PM, Postovit L-M, editors. Elife. 2020;9:e55865. doi: 10.7554/eLife.55865
  • Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: looking outside the box. J Hepatol. 2020;72(2):342–352. doi: 10.1016/j.jhep.2019.09.010
  • Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J. 2021;289(22):7163–7176. doi: 10.1111/febs.16145
  • Logue SE, McGrath EP, Cleary P, et al. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat Commun. 2018 Aug;9(1):1–14/3267. doi: 10.1038/s41467-018-05763-8
  • Luo X, Alfason L, Wei M, et al. Spliced or unspliced, that is the question: the biological roles of XBP1 isoforms in pathophysiology. Int J Mol Sci. 2022;23(5):1–25. doi: 10.3390/ijms23052746
  • Fink EE, Moparthy S, Bagati A, et al. XBP1-KLF9 axis acts as a molecular rheostat to control the transition from adaptive to cytotoxic unfolded protein response. Cell Rep. 2018;25(1):212–223.e4. doi: 10.1016/j.celrep.2018.09.013
  • Marin JJG, Macias RIR, Monte MJ, et al. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel). 2020 Jun;12(6):1663. doi: 10.3390/cancers12061663
  • Chen S, Chen J, Hua X, et al. The emerging role of XBP1 in cancer. Biomed Pharmacother. 2020;127:110069. doi: 10.1016/j.biopha.2020.110069
  • Madden E, Logue SE, Healy SJ, et al. The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol Cell. 2019;111(1):1–17. doi: 10.1111/boc.201800050
  • Giampietri C, Petrungaro S, Conti S, et al. Cancer microenvironment and endoplasmic reticulum stress response. Mediators Inflamm. 2015;2015:417281. doi: 10.1155/2015/417281
  • Pavlović N, Heindryckx F. Exploring the role of endoplasmic reticulum stress in hepatocellular carcinoma through mining of the human protein atlas. Biology. 2021 Jul;10(7):640. doi: 10.3390/biology10070640
  • Yang L, Dai R, Wu H, et al. Unspliced XBP1 Counteracts β-Catenin to Inhibit Vascular Calcification. Circ Res. 2022 Jan;130(2):213–229. doi: 10.1161/CIRCRESAHA.121.319745
  • Shi W, Chen Z, Li L, et al. Unravel the molecular mechanism of XBP1 in regulating the biology of cancer cells. J Cancer. 2019;10(9):2035–2046. doi: 10.7150/jca.29421
  • Sun Y, Jiang F, Pan Y, et al. XBP1 promotes tumor invasion and is associated with poor prognosis in oral squamous cell carcinoma. Oncol Rep. 2018;40(2):988–998. doi: 10.3892/or.2018.6498
  • González-Quiroz M, Blondel A, Sagredo A, et al. When endoplasmic reticulum proteostasis meets the DNA damage response. Trends Cell Biol. 2020;30(11):881–891. doi: 10.1016/j.tcb.2020.09.002
  • Sakthivel KM, Hariharan S. Regulatory players of DNA damage repair mechanisms: role in cancer chemoresistance. Biomed Pharmacother. 2017;93:1238–1245. doi: 10.1016/j.biopha.2017.07.035
  • Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66(1):129–143. doi: 10.1146/annurev-med-081313-121208
  • Cheng T-L, Chen P-S, Li R-H, et al. Induction of apurinic endonuclease 1 overexpression by endoplasmic reticulum stress in hepatoma cells. Int J Mol Sci. 2014;15(7):12442–12457. doi: 10.3390/ijms150712442
  • Argemí J, Kress TR, Chang HCY, et al. X-box binding protein 1 regulates unfolded protein, acute-phase, and DNA damage responses during Regeneration of mouse liver. Gastroenterology. 2017;152(5):1203–1216.e15. doi: 10.1053/j.gastro.2016.12.040
  • Duan B, Huang C, Bai J, et al. Multidrug resistance in hepatocellular carcinoma. Tirnitz-Parker JEE, editor. Brisbane (AU): Codon Publications; 2019. Chapter 8.
  • Zahreddine H, Borden K. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4(4):28. doi: 10.3389/fphar.2013.00028
  • Dubbelboer IR, Pavlovic N, Heindryckx F, et al. Liver cancer cell lines treated with Doxorubicin under Normoxia and hypoxia: cell viability and oncologic protein profile. Cancers (Basel). 2019 Jul;11(7):1024. doi: 10.3390/cancers11071024
  • Khaled J, Kopsida M, Lennernäs H, et al. Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells. 2022;11(4):1–19. doi: 10.3390/cells11040632
  • Liu Y, Adachi M, Zhao S, et al. Preventing oxidative stress: a new role for XBP1. Cell Death Differ. 2009;16(6):847–857. doi: 10.1038/cdd.2009.14
  • Chen C, Zhong Y, Wang JJ, et al. Regulation of Nrf2 by X box-binding protein 1 in retinal pigment epithelium. Front Genet. 2018;9:658. doi: 10.3389/fgene.2018.00658
  • Meseguer-Ripolles J, Lucendo-Villarin B, Tucker C, et al. Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. iScience. 2021 Jun;24(6):102552. doi: 10.1016/j.isci.2021.102552
  • Song J, Zhao W, Lu C, et al. Spliced X-box binding protein 1 induces liver cancer cell death via activating the Mst1-JNK-mROS signalling pathway. J Cell Physiol. 2020 Apr 26;235(12):9378–9387. doi: 10.1002/jcp.29742
  • KTP N, Yeung OWH, Lam YF, et al. Glutathione S-transferase A2 promotes hepatocellular carcinoma recurrence after liver transplantation through modulating reactive oxygen species metabolism. Cell Death Discov. 2021;7(1):188. doi: 10.1038/s41420-021-00569-y
  • Fu XT, Song K, Zhou J, et al. Autophagy activation contributes to glutathione transferase mu 1-mediated chemoresistance in hepatocellular carcinoma. Oncol Lett. 2018;16(1):346–352. doi: 10.3892/ol.2018.8667
  • Margariti A, Li H, Chen T, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 2013 Jan;288(2):859–872. doi: 10.1074/jbc.M112.412783
  • Yan MM, Ni JD, Song D, et al. Interplay between unfolded protein response and autophagy promotes tumor drug resistance (review). Oncol Lett. 2015;10(4):1959–1969. doi: 10.3892/ol.2015.3508
  • Ye H, Chen C, Wu H, et al. Genetic and pharmacological inhibition of XBP1 protects against APAP hepatotoxicity through the activation of autophagy. Cell Death Dis. 2022;13(2):1–13. doi: 10.1038/s41419-022-04580-8
  • Seydi H, Nouri K, Rezaei N, et al. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother. 2023 May;161:114487.
  • Zhou T, Lv X, Guo X, et al. RACK1 modulates apoptosis induced by sorafenib in HCC cells by interfering with the IRE1/XBP1 axis. Oncol Rep. 2015;33(6):3006–3014. doi: 10.3892/or.2015.3920
  • Zhang H, Li K, Lin Y, et al. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci Transl Med. 2017 Aug;9(404):eaam7996. doi: 10.1126/scitranslmed.aam7996
  • Stewart C, Estrada A, Kim P, et al. Regulation of IRE1α by the small molecule inhibitor 4μ8c in hepatoma cells. Endoplasmic Reticulum Stress Dis. 2017;4(1):1–10. doi: 10.1515/ersc-2017-0001
  • Lv S-X, Qiao X. Isovitexin (IV) induces apoptosis and autophagy in liver cancer cells through endoplasmic reticulum stress. Biochem Biophys Res Commun. 2018 Feb;496(4):1047–1054. doi: 10.1016/j.bbrc.2018.01.111
  • Lou Z, Gong Y-Q, Zhou X, et al. Low expression of miR-199 in hepatocellular carcinoma contributes to tumor cell hyper-proliferation by negatively suppressing XBP1. Oncol Lett. 2018 Nov;16(5):6531–6539. doi: 10.3892/ol.2018.9476
  • Wang JW, Ma L, Liang Y, et al. RCN1 induces sorafenib resistance and malignancy in hepatocellular carcinoma by activating c-MYC signaling via the IRE1α–XBP1s pathway. Cell Death Discov. 2021;7(1):298. doi: 10.1038/s41420-021-00696-6
  • Xie H, Hu CA, Simon MC, et al. IRE1α RNase–dependent lipid homeostasis promotes survival in Myc-transformed cancers. J Clin Investig. 2018;128(4):1300–1316. doi: 10.1172/JCI95864
  • Sas Z, Cendrowicz E, Weinhäuser I, et al. Tumor microenvironment of hepatocellular carcinoma: challenges and opportunities for new treatment options. Int J Mol Sci. 2022;23(7):3778. doi: 10.3390/ijms23073778
  • Minaei N, Ramezankhani R, Tamimi A, et al. Immunotherapeutic approaches in hepatocellular carcinoma: building blocks of hope in near future. Eur J Cell Biol. 2023 Mar;102(1):151284. doi: 10.1016/j.ejcb.2022.151284
  • Raines LN, Huang S-C. How the unfolded protein response is a boon for tumors and a bane for the immune System. ImmunoHorizons. 2023 Apr 17;7(4):256–264.
  • Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India. 2017;34(1):47–60. doi: 10.4103/0970-2113.197116
  • Méndez-Blanco C, Fondevila F, García-Palomo A, et al. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med. 2018;50(10):1–9. doi: 10.1038/s12276-018-0159-1
  • Bao MHR, Wong CCL. Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells. 2021;10(7):1–18. doi: 10.3390/cells10071715
  • Akman M, Belisario DC, Salaroglio IC, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. J Exp Clin Cancer Res. 2021;40(1):1–17. doi: 10.1186/s13046-020-01824-3
  • Xia Z, Wu S, Wei X, et al. Hypoxic ER stress suppresses β-catenin expression and promotes cooperation between the transcription factors XBP1 and HIF1α for cell survival. J Biol Chem. 2019;294(37):13811–13821. doi: 10.1074/jbc.RA119.008353
  • Cai J, Hu M, Chen Z, et al. The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med. 2021;19(1):1–13. doi: 10.1186/s12967-021-02854-x
  • Baglieri J, Brenner DA, Kisseleva T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int J Mol Sci. 2019 Apr;20(7):1723. doi: 10.3390/ijms20071723
  • Solhi R, Lotfi AS, Lotfinia M, et al. Hepatic stellate cell activation by TGFβ induces hedgehog signaling and endoplasmic reticulum stress simultaneously. Toxicol Vitr An Int J Publ Assoc With BIBRA. 2022 Apr;80:105315.
  • Özkan A, Stolley DL, Cressman ENK, et al. Tumor microenvironment alters chemoresistance of hepatocellular carcinoma through CYP3A4 metabolic activity. Front Oncol. 2021;11(June):1–16. doi: 10.3389/fonc.2021.662135
  • Kim RS, Hasegawa D, Goossens N, et al. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci Rep. 2016;6(September):1–9. doi: 10.1038/srep39342
  • Maiers JL, Kostallari E, Mushref M, et al. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology. 2017 Mar;65(3):983–998. doi: 10.1002/hep.28921
  • Mannaerts I, Thoen LFR, Eysackers N, et al. Unfolded protein response is an early, non-critical event during hepatic stellate cell activation. Cell Death Dis. 2019;10(2):98. doi: 10.1038/s41419-019-1327-5
  • Zhang J, Gu C, Song Q, et al. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci. 2020;10(1):1–15. doi: 10.1186/s13578-020-00488-y
  • Chi H, Chen D, Zhang Y, et al. Single-cell transcriptome analysis reveals a cancer-associated fibroblast marker gene signature in hepatocellular carcinoma that predicts prognosis. iLIVER. 2023;2(1):16–25. doi: 10.1016/j.iliver.2022.12.002
  • Wu S, Du R, Gao C, et al. The role of XBP1s in the metastasis and prognosis of hepatocellular carcinoma. Biochem Biophys Res Commun. 2018 Jun;500(3):530–537. doi: 10.1016/j.bbrc.2018.04.033
  • Xu Y, Zhao W, Xu J, et al. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget. 2016 Feb 23;7(8):8866–8878. doi: 10.18632/oncotarget.6839
  • Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):1–30. doi: 10.1186/s12943-021-01428-1
  • Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–140.
  • Lou X, Gao D, Yang L, et al. Endoplasmic reticulum stress mediates the myeloid ‑ derived immune suppression associated with cancer and infectious disease. J Transl Med. 2023;21(1):1–13. doi: 10.1186/s12967-022-03835-4
  • Lu L-C, Chang C-J, Hsu C-H. Targeting myeloid-derived suppressor cells in the treatment of hepatocellular carcinoma: current state and future perspectives. J Hepatocell Carcinoma. 2019;6:71–84. doi: 10.2147/JHC.S159693
  • Lou X, Gao D, Yang L, et al. Endoplasmic reticulum stress mediates the myeloid-derived immune suppression associated with cancer and infectious disease. J Transl Med. 2023;21(1):1–13. doi: 10.1186/s12967-022-03835-4
  • Nan J, Xing Y-F, Hu B, et al. Endoplasmic reticulum stress induced LOX-1(+) CD15(+) polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology. 2018 May;154(1):144–155. doi: 10.1111/imm.12876
  • Feng MY, Chan LL, Chan SL. Drug Treatment for Advanced Hepatocellular Carcinoma: First-Line and Beyond. Curr Oncol. 2022 Aug;29(8):5489–5507. doi: 10.3390/curroncol29080434
  • Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616. doi: 10.1038/s41571-018-0073-4
  • Shannon AH, Ruff SM, Pawlik TM. Expert insights on Current treatments for hepatocellular carcinoma: clinical and molecular approaches and bottlenecks to progress. J Hepatocell Carcinoma. 2022;9(December):1247–1261. doi: 10.2147/JHC.S383922
  • Qing B, Wang S, Du Y, et al. Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: hope or frustration. Front Pharmacol. 2023;14(September):1–16. doi: 10.3389/fphar.2023.1273987
  • Zheng Y, Ma L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol. 2021;12:648407. doi: 10.3389/fphar.2021.648407
  • Dauer P, Sharma NS, Gupta VK, et al. GRP78-mediated antioxidant response and ABC transporter activity confers chemoresistance to pancreatic cancer cells. Mol Oncol. 2018;12(9):1498–1512. doi: 10.1002/1878-0261.12322
  • Gao Q, Xiu LX, Ming XY, et al. IRE1α-targeting downregulates ABC transporters and overcomes drug resistance of colon cancer cells. Cancer Lett. 2020;476(September 2019):67–74. doi: 10.1016/j.canlet.2020.02.007
  • Takahashi K, Putchakayala KG, Safwan M, et al. Extrahepatic metastasis of hepatocellular carcinoma to the paravertebral muscle: a case report. World J Hepatol. 2017;9(22):973–978. doi: 10.4254/wjh.v9.i22.973
  • Barua D, Gupta A, Gupta S. Targeting the IRE1-XBP1 axis to overcome endocrine resistance in breast cancer: opportunities and challenges. Cancer Lett. 2020;486:29–37. doi: 10.1016/j.canlet.2020.05.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.