66
Views
0
CrossRef citations to date
0
Altmetric
Original Research

miR-26a-5p restoration via EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer

, , , , , & show all
Pages 1285-1297 | Received 06 Jun 2023, Accepted 07 Dec 2023, Published online: 29 Dec 2023

References

  • Wang L, Lu B, He M, et al. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 2022;10:811044. doi: 10.3389/fpubh.2022.811044
  • Gonzalez-Billalabeitia E, Seitzer N, Song SJ, et al. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov. 2014 Aug;4(8):896–904. doi: 10.1158/2159-8290.CD-13-0230
  • Daniunaite K, Dubikaityte M, Gibas P, et al. Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet. 2017 Jul 1;26(13):2451–2461. doi: 10.1093/hmg/ddx138
  • Karanikolas BD, Figueiredo ML, Wu L. Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate. 2010 May 1;70(6):675–88. doi: 10.1002/pros.21112
  • Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020 Jul 28;13(1):104. doi: 10.1186/s13045-020-00937-8
  • Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002 Oct 10;419(6907):624–629. doi: 10.1038/nature01075
  • Bachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006 Jan 10;24(2):268–273. doi: 10.1200/JCO.2005.01.5180
  • Qiu BQ, Lin XH, Ye XD, et al. Long non-coding RNA PSMA3-AS1 promotes malignant phenotypes of esophageal cancer by modulating the miR-101/EZH2 axis as a ceRNA. Aging. 2020 Jan 31;12(2):1843–1856. doi: 10.18632/aging.102716
  • Gan L, Xu M, Hua R, et al. The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J Hematol Oncol. 2018 Jan 15;11(1):9. doi: 10.1186/s13045-017-0547-3
  • Pellecchia S, Sepe R, Decaussin-Petrucci M, et al. The Long non-Coding RNA Prader Willi/Angelman region RNA5 (PAR5) is downregulated in anaplastic thyroid carcinomas where it acts as a tumor suppressor by reducing EZH2 activity. Cancers (Basel). 2020 Jan 17;12(1):235. doi: 10.3390/cancers12010235
  • Fan DC, Zhao YR, Qi H, et al. MiRNA-506 presents multiple tumor suppressor activities by targeting EZH2 in nasopharyngeal carcinoma. Auris Nasus Larynx. 2020 Aug;47(4):632–642. doi: 10.1016/j.anl.2019.12.007
  • Krill L, Deng W, Eskander R, et al. Overexpression of enhance of zeste homolog 2 (EZH2) in endometrial carcinoma: an NRG Oncology/Gynecologic Oncology group study. Gynecol Oncol. 2020 Feb;156(2):423–429. doi: 10.1016/j.ygyno.2019.12.003
  • Sun C, Zhao C, Li S, et al. EZH2 expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis. J Cancer. 2018;9(20):3787–3796. doi: 10.7150/jca.26275
  • Sashida G, Iwama A. Multifaceted role of the polycomb-group gene EZH2 in hematological malignancies. Int J Hematol. 2017 Jan;105(1):23–30. doi: 10.1007/s12185-016-2124-x
  • Bodor C, O’Riain C, Wrench D, et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia. 2011 Apr;25(4):726–729. doi: 10.1038/leu.2010.311
  • Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011 Feb 24;117(8):2451–2459. doi: 10.1182/blood-2010-11-321208
  • Zhang Q, Han Q, Zi J, et al. Mutations in EZH2 are associated with poor prognosis for patients with myeloid neoplasms. Genes Dis. 2019 Sep;6(3):276–281. doi: 10.1016/j.gendis.2019.05.001
  • Chen YH, Yeh FL, Yeh SP, et al. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor gamma-2. J Biol Chem. 2011 Mar 25;286(12):10671–80. doi: 10.1074/jbc.M110.199612
  • Chang CJ, Hung MC. The role of EZH2 in tumour progression. Br J Cancer. 2012 Jan 17;106(2):243–247. doi: 10.1038/bjc.2011.551
  • Aveta A, Cilio S, Contieri R, et al. Urinary MicroRNAs as biomarkers of urological cancers: a systematic review. Int J Mol Sci. 2023 Jun 29;24(13):10846. doi: 10.3390/ijms241310846
  • Ghorbanmehr N, Gharbi S, Korsching E, et al. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate. 2019 Jan;79(1):88–95. doi: 10.1002/pros.23714
  • Markert L, Holdmann J, Klinger C, et al. Small RNAs as biomarkers to differentiate benign and malign prostate diseases: an alternative for transrectal punch biopsy of the prostate? PLoS One. 2021;16(3):e0247930. doi: 10.1371/journal.pone.0247930
  • Kang HW, Byun YJ, Moon SM, et al. Urinary hsv2-miR-H9 to hsa-miR-3659 ratio is an effective marker for discriminating prostate cancer from benign prostate hyperplasia in patients within the prostate-specific antigen grey zone. Investig Clin Urol. 2022 Mar;63(2):238–244. doi: 10.4111/icu.20210493
  • Byun YJ, Piao XM, Jeong P, et al. Urinary microRNA-1913 to microRNA-3659 expression ratio as a non-invasive diagnostic biomarker for prostate cancer. Investig Clin Urol. 2021 May;62(3):340–348. doi: 10.4111/icu.20200488
  • Hasanoglu S, Goncu B, Yucesan E, et al. Investigating differential miRNA expression profiling using serum and urine specimens for detecting potential biomarkers for early prostate cancer diagnosis. Turk J Med Sci. 2021 Aug 30;51(4):1764–1774. doi: 10.3906/sag-2010-183
  • Leite KR, Tomiyama A, Reis ST, et al. MicroRNA expression profiles in the progression of prostate cancer–from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol. 2013 Aug;31(6):796–801. doi: 10.1016/j.urolonc.2011.07.002
  • Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007 Jul 1;67(13):6130–6135. doi: 10.1158/0008-5472.CAN-07-0533
  • Ling Z, Wang X, Tao T, et al. Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer. J Exp Clin Cancer Res. 2017 Nov 15;36(1):159. doi: 10.1186/s13046-017-0629-7
  • Samaan S, Lichner Z, Ding Q, et al. Kallikreins are involved in an miRNA network that contributes to prostate cancer progression. Biol Chem. 2014 Sep;395(9):991–1001. doi: 10.1515/hsz-2013-0288
  • Guo K, Zheng S, Xu Y, et al. Loss of miR-26a-5p promotes proliferation, migration, and invasion in prostate cancer through negatively regulating SERBP1. Tumour Biol. 2016 Sep;37(9):12843–12854. doi: 10.1007/s13277-016-5158-z
  • Lu YY, Lin Y, Ding DX, et al. MiR-26a functions as a tumor suppressor in ambient particulate matter-bound metal-triggered lung cancer cell metastasis by targeting LIN28B-IL6-STAT3 axis. Arch Toxicol. 2018 Mar;92(3):1023–1035. doi: 10.1007/s00204-017-2141-4
  • Sanchis P, Fernandez-Gayol O, Vizueta J, et al. Microglial cell-derived interleukin-6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia. 2020 May;68(5):999–1016. doi: 10.1002/glia.23758
  • Guo Y, Xu F, Lu T, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012 Nov;38(7):904–910. doi: 10.1016/j.ctrv.2012.04.007
  • Azevedo A, Cunha V, Teixeira AL, et al. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol. 2011 Dec 10;2(12):384–96. doi: 10.5306/wjco.v2.i12.384
  • Liu Y, Li PK, Li C, et al. Inhibition of STAT3 signaling blocks the anti-apoptotic activity of IL-6 in human liver cancer cells. J Biol Chem. 2010 Aug 27;285(35):27429–27439. doi: 10.1074/jbc.M110.142752
  • Liu C, Zhu Y, Lou W, et al. Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. Prostate. 2014 Feb;74(2):201–209. doi: 10.1002/pros.22741
  • Paner GP, Stadler WM, Hansel DE, et al. Updates in the eighth edition of the tumor-node-metastasis staging classification for urologic cancers. Eur Urol. 2018 Apr;73(4):560–569. doi: 10.1016/j.eururo.2017.12.018
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7–33. doi: 10.3322/caac.21708
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–249. doi: 10.3322/caac.21660
  • Park SH, Fong KW, Mong E, et al. Going beyond polycomb: EZH2 functions in prostate cancer. Oncogene. 2021 Sep;40(39):5788–5798. doi: 10.1038/s41388-021-01982-4
  • Park SH, Fong KW, Kim J, et al. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 2021 Apr;7(15). doi: 10.1126/sciadv.abe2261
  • Xu K, Wu ZJ, Groner AC, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science. 2012 Dec 14;338(6113):1465–1469. doi: 10.1126/science.1227604
  • Kim J, Lee Y, Lu X, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018 Dec 4;25(10):2808–2820 e4. doi: 10.1016/j.celrep.2018.11.035
  • Nguyen DP, Li J, Tewari AK. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 2014 Jun;113(6):986–992. doi: 10.1111/bju.12452
  • Wang C, Ding T, Yang D, et al. The lncRNA OGFRP1/miR-149-5p/IL-6 axis regulates prostate cancer chemoresistance. Pathol Res Pract. 2021 Aug;224:153535.
  • Gandellini P, Folini M, Longoni N, et al. miR-205 exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase cepsilon. Cancer Res. 2009 Mar 15;69(6):2287–95. doi: 10.1158/0008-5472.CAN-08-2894
  • Sung SY, Liao CH, Wu HP, et al. Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS One. 2013;8(8):e71637. doi: 10.1371/journal.pone.0071637
  • Steiner H, Cavarretta IT, Moser PL, et al. Regulation of growth of prostate cancer cells selected in the presence of interleukin-6 by the anti-interleukin-6 antibody CNTO 328. Prostate. 2006 Dec 1;66(16):1744–1752. doi: 10.1002/pros.20492
  • Gaykalova DA, Manola JB, Ozawa H, et al. NF-kappaB and stat3 transcription factor signatures differentiate HPV-positive and HPV-negative head and neck squamous cell carcinoma. Int J Cancer. 2015 Oct 15;137(8):1879–89. doi: 10.1002/ijc.29558
  • Lee DS, O’Keefe RA, Ha PK, et al. Biochemical properties of a decoy oligodeoxynucleotide inhibitor of STAT3 transcription factor. Int J Mol Sci. 2018 May 30;19(6):1608. doi: 10.3390/ijms19061608
  • Schroeder A, Herrmann A, Cherryholmes G, et al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 2014 Feb 15;74(4):1227–1237. doi: 10.1158/0008-5472.CAN-13-0594
  • Hayashi T, Fujita K, Nojima S, et al. High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin Cancer Res. 2018 Sep 1;24(17):4309–4318. doi: 10.1158/1078-0432.CCR-18-0106
  • Di Minno A, Aveta A, Gelzo M, et al. 8-hydroxy-2-deoxyguanosine and 8-iso-prostaglandin F2α: putative biomarkers to assess oxidative stress damage following robot-assisted radical prostatectomy (RARP). J Clin Med. 2022 Oct 17;11(20):6102. doi: 10.3390/jcm11206102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.