873
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Unraveling therapeutic targets in acute myeloid leukemia through multiplexed genome editing CRISPR screening

, &
Pages 1173-1176 | Received 21 Aug 2023, Accepted 07 Dec 2023, Published online: 11 Dec 2023

References

  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143
  • Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–826. doi: 10.1126/science.1232033
  • Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–87. doi: 10.1126/science.1247005
  • Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–784. doi: 10.1038/nmeth.3047
  • Tzelepis K, Koike-Yusa H, De Braekeleer E, et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 2016;17(4):1193–1205. doi: 10.1016/j.celrep.2016.09.079
  • Wang E, Zhou H, Nadorp B, et al. Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation. Cell Stem Cell. 2021;28(4):718–731. doi: 10.1016/j.stem.2020.12.005
  • Aubrey BJ, Cutler JA, Bourgeois W, et al. IKAROS and MENIN coordinate therapeutically actionable leukaemogenic gene expression in MLL-r acute myeloid leukaemia. Nat Cancer. 2022;3(5):595–613. doi: 10.1038/s43018-022-00366-1
  • Takacs G, Zhou Y, King DJ, et al. CRISPR dropout screens identify DHODH, PIK3C3, and crkl as potential therapeutic targets in acute myeloid leukemia. Blood. 2019;134(Supplement_1):1452. doi: 10.1182/blood-2019-128180
  • Hou PP, Wu C, Wang YC, et al. A genome-wide CRISPR screen identifies genes critical for resistance to FLT3 inhibitor AC220. Cancer Res. 2017;77(16):4402–4413. doi: 10.1158/0008-5472.CAN-16-1627
  • Ling VY, Straube J, Godfrey W, et al. Targeting cell cycle and apoptosis to overcome chemotherapy resistance in acute myeloid leukemia. Leukemia. 2023;37(1):143–153. doi: 10.1038/s41375-022-01755-2
  • Mercier FE, Shi JT, Sykes DB, et al. In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Adv. 2022;6(17):5072–5084. doi: 10.1182/bloodadvances.2022007250
  • Lin S, Larrue C, Scheidegger NK, et al. An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discov. 2022;12(2):432–449. doi: 10.1158/2159-8290.CD-20-1851
  • Zhu Y, Huang YH, Tan Y, et al. Single-cell RNA sequencing in hematological diseases. Proteomics. 2020;20(13):e1900228. doi: 10.1002/pmic.201900228
  • Duan B, Zhou C, Zhu CY, et al. Model-based understanding of single-cell CRISPR screening. Nat Commun. 2019;10(1):2233. doi: 10.1038/s41467-019-10216-x
  • Wessels HH, Méndez-Mancilla A, Hao YH. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat Methods. 2023;20(1):86–94. doi: 10.1038/s41592-022-01705-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.