333
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel signatures of prostate cancer progression and therapeutic resistance

, ORCID Icon, , , &
Pages 1195-1206 | Received 31 Aug 2023, Accepted 07 Dec 2023, Published online: 20 Dec 2023

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023 Jan;73(1):17–48.
  • Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin. 1972 Jul-Aug;22(4):232–240.
  • Sekhoacha M, Riet K, Motloung P, et al. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022 Sep 5;27(17):5730.
  • Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011 Nov;1(6):487–495. doi: 10.1158/2159-8290.CD-11-0130
  • Conteduca V, Oromendia C, Eng KW, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer. 2019 Nov;121:7–18.
  • Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018 May;15(5):271–286.
  • Chakraborty G, Gupta K, Kyprianou N. Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer. Nat Commun. 2023 Feb 2;14(1):567.
  • Harris WP, Mostaghel EA, Nelson PS, et al. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol. 2009 Feb;6(2):76–85.
  • Wade CA, Kyprianou N. Profiling prostate cancer therapeutic resistance. Int J Mol Sci. 2018 Mar 19;19(3):904.
  • Armstrong AJ, Szmulewitz RZ, Petrylak DP, et al. ARCHES: a randomized, phase iii study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2019 Nov 10;37(32):2974–2986.
  • Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021 Feb;18(2):79–92. doi: 10.1038/s41585-020-00400-w
  • Shah S, Rachmat R, Enyioma S, et al. BRCA mutations in prostate cancer: assessment, implications and treatment considerations. Int J Mol Sci. 2021 Nov 23;22(23):12628.
  • Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Health. 2019 Sep;37(3):288–295.
  • Han W, Liu M, Han D, et al. RB1 loss in castration-resistant prostate cancer confers vulnerability to LSD1 inhibition. Oncogene. 2022 Feb;41(6):852–864. doi: 10.1038/s41388-021-02135-3
  • Liu Z, Guo H, Zhu Y, et al. TP53 alterations of hormone-naïve prostate cancer in the Chinese population. Prostate Cancer Prostatic Dis. 2021 Jun;24(2):482–491. doi: 10.1038/s41391-020-00302-3
  • Gaglani S, Gonzalez-Kozlova E, Lundon DJ, et al. Exosomes as a next-generation diagnostic and therapeutic tool in prostate cancer. Int J Mol Sci. 2021 Sep 20;22(18):10131.
  • Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. J Clin Oncol. 2003 Jan 15;21(2):383–391
  • Saxby H, Mikropoulos C, Boussios S. An update on the prognostic and predictive serum biomarkers in metastatic prostate cancer. Diagnostics (Basel). 2020 Jul 31;10(8). doi: 10.3390/diagnostics10080549
  • Hoffman RM, Clanon DL, Littenberg B, et al. Using the free-to-total prostate-specific antigen ratio to detect prostate cancer in men with nonspecific elevations of prostate-specific antigen levels. J Gen Intern Med. 2000 Oct;15(10):739–748. doi: 10.1046/j.1525-1497.2000.90907.x
  • Pezaro C, Woo HH, Davis ID. Prostate cancer: measuring PSA. Intern Med J. 2014 May;44(5):433–440.
  • Gleave ME, Coupland D, Drachenberg D, et al. Ability of serum prostate-specific antigen levels to predict normal bone scans in patients with newly diagnosed prostate cancer. Urology. 1996 May;47(5):708–712. doi: 10.1016/S0090-4295(96)80016-1
  • Thomsen FB, Westerberg M, Garmo H, et al. Prediction of metastatic prostate cancer by prostate-specific antigen in combination with T stage and Gleason grade: nationwide, population-based register study. PLoS One. 2020;15(1):e0228447. doi: 10.1371/journal.pone.0228447
  • Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 2021 Jan 12;23(2):15.
  • Gutman EB, Sproul EE, Gutman AB. Significance of increased phosphatase activity of bone at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am J Cancer Res. 1936;28(3):485–495.
  • Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002 Jul;168(1):9–12.
  • Muniyan S, Chaturvedi NK, Dwyer JG, et al. Human prostatic acid phosphatase: structure, function and regulation. Int J Mol Sci. 2013 May 21;14(5):10438–10464.
  • Ozu C, Nakashima J, Horiguchi Y, et al. Prediction of bone metastases by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer. Int J Urol. 2008 May;15(5):419–422. doi: 10.1111/j.1442-2042.2008.02029.x.
  • Kirschenbaum A, Liu XH, Yao S, et al. Prostatic acid phosphatase is expressed in human prostate cancer bone metastases and promotes osteoblast differentiation. Ann N Y Acad Sci. 2011 Nov;1237(1):64–70. doi: 10.1111/j.1749-6632.2011.06198.x
  • Kirschenbaum A, Izadmehr S, Yao S, et al. Prostatic acid phosphatase alters the RANKL/OPG system and induces osteoblastic prostate cancer bone metastases. Endocrinology. 2016 Dec;157(12):4526–4533. doi: 10.1210/en.2016-1606
  • Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6 Suppl 10(Suppl 10):S13–8.
  • Kasperzyk JL, Finn SP, Flavin R, et al. Prostate-specific membrane antigen protein expression in tumor tissue and risk of lethal prostate cancer. Cancer Epidemiol Biomarkers Prev. 2013 Dec;22(12):2354–2363. doi: 10.1158/1055-9965.EPI-13-0668
  • Conway RE, Petrovic N, Li Z, et al. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol. 2006 Jul;26(14):5310–5324. doi: 10.1128/MCB.00084-06
  • Berger A. How does it work? Positron emission tomography. BMJ. 2003 Jun 28;326(7404):1449.
  • Patel PR, De Jesus O. CT scan. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC; 2023.
  • Hofman MS, Murphy DG, Williams SG, et al. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol. BJU Int. 2018 Nov;122(5):783–793. doi: 10.1111/bju.14374
  • Wright GL Jr, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996 Aug;48(2):326–334. doi: 10.1016/S0090-4295(96)00184-7
  • Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020 Apr 11;395(10231):1208–1216.
  • St John J, Powell K, Conley-Lacomb MK, et al. TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J Cancer Sci Ther. 2012 Apr 26;4(4):94–101.
  • Qian C, Li D, Chen Y. ETS factors in prostate cancer. Cancer Lett. 2022 Apr 1;530:181–189. doi: 10.1016/j.canlet.2022.01.009
  • Song C, Chen H. Overview of research on fusion genes in prostate cancer. Transl Cancer Res. 2020 Mar;9(3):1998–2011.
  • Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005 Oct 28;310(5748):644 8.
  • Clark JP, Cooper CS. ETS gene fusions in prostate cancer. Nat Rev Urol. 2009 Aug;6(8):429–439.
  • Wang J, Cai Y, Yu W, et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res. 2008 Oct 15;68(20):8516–8524.
  • Klezovitch O, Risk M, Coleman I, et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2105–2110.
  • Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012 Jul 12;487(7406):239–243.
  • Baena E, Shao Z, Linn DE, et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 2013 Mar 15;27(6):683–698.
  • Li X, Moon G, Shin S, et al. Cooperation between ETS variant 2 and jumonji domain‑containing 2 histone demethylases. Mol Med Rep. 2018 Apr;17(4):5518–5527. doi: 10.3892/mmr.2018.8507
  • Wedge DC, Gundem G, Mitchell T, et al. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat Genet. 2018 May;50(5):682–692. doi: 10.1038/s41588-018-0086-z
  • Kim DH, Xing T, Yang Z, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017 Dec 22;7(1):1.
  • Chaves LP, Melo CM, Saggioro FP, et al. Epithelial-mesenchymal transition signaling and prostate cancer stem cells: emerging biomarkers and opportunities for precision therapeutics. Genes (Basel). 2021 Nov 27;12(12):1900.
  • Jolly MK, Ware KE, Gilja S, et al. EMT and MET: necessary or permissive for metastasis? Mol Oncol. 2017 Jul;11(7):755–769. doi: 10.1002/1878-0261.12083
  • Maître JL, Heisenberg CP. Three functions of cadherins in cell adhesion. Curr Biol. 2013 Jul 22;23(14):R626–R633.
  • van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008 Nov;65(23):3756–3788.
  • Kourtidis A, Lu R, Pence LJ, et al. A central role for cadherin signaling in cancer. Exp Cell Res. 2017 Sep 1;358(1):78–85.
  • López-Moncada F, Torres MJ, Lavanderos B, et al. SPARC induces e-cadherin repression and enhances cell migration through integrin αvβ3 and the transcription factor ZEB1 in prostate cancer cells. Int J Mol Sci. 2022 May 24;23(11):5874.
  • Tanaka H, Kono E, Tran CP, et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010 Dec;16(12):1414–1420. doi: 10.1038/nm.2236
  • Basu S, Cheriyamundath S, Ben-Ze’ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res. 2018;7:1488.
  • Davies G, Jiang WG, Mason MD. Cell-cell adhesion molecules and signaling intermediates and their role in the invasive potential of prostate cancer cells. J Urol. 2000 Mar;163(3):985–992.
  • Nowicki A, Sporny S, Duda-Szymańska J. β-catenin as a prognostic factor for prostate cancer (PCa). Cent European J Urol. 2012;65(3):119–123.
  • Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020 Dec;113(12):2019–2040.
  • Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006 Jun 2;312(5778):1355–1359.
  • Eloe-Fadrosh EA, Rasko DA. The human microbiome: from symbiosis to pathogenesis. Annu Rev Med. 2013;64(1):145–163.
  • Zha C, Peng Z, Huang K, et al. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol. 2023;13:1196217.
  • Altveş S, Yildiz HK, Vural HC. Interaction of the microbiota with the human body in health and diseases. Biosci Microbiota Food Health. 2020;39(2):23–32.
  • Matsushita M, Fujita K, Hatano K, et al. Connecting the dots between the gut-IGF-1-prostate axis: a role of IGF-1 in prostate carcinogenesis. Front Endocrinol (Lausanne). 2022;13:852382.
  • Manzoor SS, Doedens A, Burns MB. The promise and challenge of cancer microbiome research. Genome Biol. 2020 Jun 2;21(1):131.
  • Katongole P, Sande OJ, Joloba M, et al. The human microbiome and its link in prostate cancer risk and pathogenesis. Infect Agent Cancer. 2020;15(1):53. doi: 10.1186/s13027-020-00319-2
  • Kamel MH, Khalil MI, Alobuia WM, et al. Incidence of metastasis and prostate-specific antigen levels at diagnosis in Gleason 3+4 versus 4+3 prostate cancer. Urol Ann. 2018 Apr-Jun;10(2):203–208. doi: 10.4103/UA.UA_124_17
  • Matsushita M, Fujita K, Motooka D, et al. The gut microbiota associated with high-Gleason prostate cancer. Cancer Sci. 2021 Aug;112(8):3125–3135. doi: 10.1111/cas.14998.
  • Matsushita M, Fujita K, Hayashi T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res. 2021 Aug 1;81(15):4014–4026.
  • Liu G, Zhu M, Zhang M, et al. Emerging role of IGF-1 in prostate cancer: a promising biomarker and therapeutic target. Cancers (Basel). 2023 Feb 17;15(4):5228.
  • Matsushita M, Fujita K, Motooka D, et al. Firmicutes in gut microbiota correlate with blood testosterone levels in elderly men. World J Mens Health. 2022 Jul;40(3):517–525. doi: 10.5534/wjmh.210190
  • Shin JH, Park YH, Sim M, et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol. 2019 Jun-Aug;170(4–5):192–201. doi: 10.1016/j.resmic.2019.03.003
  • Liu Y, Yang C, Zhang Z, et al. Gut microbiota dysbiosis accelerates prostate cancer progression through increased LPCAT1 expression and enhanced DNA repair pathways. Front Oncol. 2021;11:679712.
  • Ly LK, Rowles JL 3rd, Paul HM, et al. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol. 2020 May;199:105567.
  • Choi SW, Mason JB. Folate status: effects on pathways of colorectal carcinogenesis. J Nutr. 2002 Aug;132(8 Suppl):2413s–2418s.
  • Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011 Jan;3(1):118–134.
  • Figueiredo JC, Grau MV, Haile RW, et al. Folic acid and risk of prostate cancer: results from a randomized clinical trial. J Natl Cancer Inst. 2009 Mar 18;101(6):432–435.
  • Smyth MJ, Hayakawa Y, Takeda K, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002 Nov;2(11):850–861.
  • Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021 Nov 22;6(1):404.
  • Dianat-Moghadam H, Azizi M, Eslami SZ, et al. The role of circulating tumor cells in the metastatic cascade: biology, technical challenges, and clinical relevance. Cancers (Basel). 2020 Apr 3;12(4):867.
  • Pantel K, Speicher MR. The biology of circulating tumor cells. Oncogene. 2016 Mar 10;35(10):1216–1224.
  • Dianat-Moghadam H, Heidarifard M, Jahanban-Esfahlan R, et al. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release. 2018 Oct 28;288:62–83. doi: 10.1016/j.jconrel.2018.08.043
  • Cieślikowski WA, Antczak A, Nowicki M, et al. Clinical relevance of circulating tumor cells in prostate cancer management. Biomedicines. 2021 Sep 8;9(9):1179.
  • Clarke NW, Hart CA, Brown MD. Molecular mechanisms of metastasis in prostate cancer. Asian J Androl. 2009 Jan;11(1):57–67.
  • Gourdin T, Sonpavde G. Utility of cell-free nucleic acid and circulating tumor cell analyses in prostate cancer. Asian J Androl. 2018 May-Jun;20(3):230–237.
  • Hussain SH, Huertas CS, Mitchell A, et al. Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: trends and prospects. Biosens Bioelectron. 2022 Feb 1;197:113770. doi: 10.1016/j.bios.2021.113770
  • Heidrich I, Ačkar L, Mossahebi Mohammadi P, et al. Liquid biopsies: potential and challenges. Int J Cancer. 2021 Feb 1;148(3):528–545.
  • Danila DC, Heller G, Gignac GA, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007 Dec 1;13(23):7053–7058.
  • Broncy L, Paterlini-Bréchot P. Clinical impact of circulating tumor cells in patients with localized prostate cancer. Cells. 2019 Jul 3;8(7):676.
  • Sharp A, Coleman I, Yuan W, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019 Jan 2;129(1):192–208.
  • Antonarakis ES, Lu C, Luber B, et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J Clin Oncol. 2017 Jul 1;35(19):2149–2156.
  • Bernemann C, Schnoeller TJ, Luedeke M, et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol. 2017 Jan;71(1):1–3. doi: 10.1016/j.eururo.2016.07.021
  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018 Apr;19(4):213–228.
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 Feb 7;367(6478). doi: 10.1126/science.aau6977
  • Boussios S, Devo P, Goodall ICA, et al. Exosomes in the diagnosis and treatment of renal cell cancer. Int J Mol Sci. 2023 Sep 20;24(18):14356.
  • Bellin G, Gardin C, Ferroni L, et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells. 2019 Feb 17;8(2):166.
  • Tai YL, Chen KC, Hsieh JT, et al. Exosomes in cancer development and clinical applications. Cancer Sci. 2018 Aug;109(8):2364–2374.
  • Di Meo A, Bartlett J, Cheng Y, et al. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer. 2017 Apr 14;16(1):80.
  • Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009 May 19;100(10):1603–1607.
  • Kohaar I, Chen Y, Banerjee S, et al. A urine exosome gene expression panel distinguishes between indolent and aggressive prostate cancers at biopsy. J Urol. 2021 Feb;205(2):420–425. doi: 10.1097/JU.0000000000001374
  • Logozzi M, Angelini DF, Giuliani A, et al. Increased plasmatic levels of PSA-expressing exosomes distinguish prostate cancer patients from benign prostatic hyperplasia: a prospective study. Cancers (Basel). 2019 Sep 27;11(10):1449.
  • Kharaziha P, Chioureas D, Rutishauser D, et al. Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. Oncotarget. 2015 Aug 28;6(25):21740–21754.
  • Chen TY, Gonzalez-Kozlova E, Soleymani T, et al. Extracellular vesicles carry distinct proteo-transcriptomic signatures that are different from their cancer cell of origin. iScience. 2022 Jun 17;25(6):104414.
  • Gaballa R, Ali HEA, Mahmoud MO, et al. Exosomes-mediated transfer of Itga2 promotes migration and invasion of prostate cancer cells by inducing epithelial-mesenchymal transition. Cancers (Basel). 2020 Aug 15;12(8):2300.
  • Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018 Sep;18(9):533–548.
  • Borel M, Lollo G, Magne D, et al. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis. 2020 Dec 1;1866(12):165919.
  • Wang L, Wang J, Yin X, et al. GIPC2 interacts with Fzd7 to promote prostate cancer metastasis by activating WNT signaling. Oncogene. 2022 Apr;41(18):2609–2623. doi: 10.1038/s41388-022-02255-4
  • Zhang Y, Zhao J, Ding M, et al. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. J Exp Clin Cancer Res. 2020 Dec 14;39(1):282.
  • Corcoran C, Rani S, O’Brien K, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999. doi: 10.1371/journal.pone.0050999
  • Vardaki I, Özcan SS, Fonseca P, et al. Transcriptomic analysis of plasma exosomes provides molecular information of response to cabazitaxel treatment in men with metastatic castration-resistant prostate cancer. Prostate. 2023 Jul;83(10):950–961. doi: 10.1002/pros.24536
  • Re M D, Conteduca V, Crucitta S, et al. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide. Prostate Cancer Prostatic Dis. 2021 Jun;24(2):524–531. doi: 10.1038/s41391-020-00309-w
  • Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci. 2020 Sep 4;21(18):6466.
  • Abeshouse A, Ahn J, Akbani R. The molecular taxonomy of primary prostate cancer. Cell. 2015 Nov 5;163(4):1011–1025.
  • Kumar A, Coleman I, Morrissey C, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016 Apr;22(4):369–378. doi: 10.1038/nm.4053
  • Brady L, Kriner M, Coleman I, et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun. 2021 Mar 3;12(1):1426.
  • Sobhani N, Neeli PK, D’Angelo A, et al. AR-V7 in metastatic prostate cancer: a strategy beyond redemption. Int J Mol Sci. 2021 May 24;22(11):5515.
  • Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018 Jul 26;174(3):758–769.e9.
  • Rummens JL, Hidajat M, Van Hoof A, et al. Evaluation of an immunoenzymatic method for staining haematological cell populations using monoclonal antibodies. Acta Clin Belg. 1986;41(5):319–327. doi: 10.1080/22953337.1986.11719169
  • Sumiyoshi T, Mizuno K, Yamasaki T, et al. Clinical utility of androgen receptor gene aberrations in circulating cell-free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep. 2019 Mar 11;9(1):4030.
  • Zhu Y, Dalrymple SL, Coleman I, et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene. 2020 Nov;39(45):6935–6949. doi: 10.1038/s41388-020-01479-6
  • Takeda DY, Spisák S, Seo JH, et al. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell. 2018 Jul 12;174(2):422–432.e13.
  • Dang HX, Chauhan PS, Ellis H, et al. Cell-free DNA alterations in the AR enhancer and locus predict resistance to AR-directed therapy in patients with metastatic prostate cancer. JCO Precis Oncol. 2020;4(4):680–713. doi: 10.1200/PO.20.00047
  • Pak S, Suh J, Park SY, et al. Glucocorticoid receptor and androgen receptor-targeting therapy in patients with castration-resistant prostate cancer. Front Oncol. 2022;12:972572.
  • Murillo-Garzón V, Kypta R. WNT signalling in prostate cancer. Nat Rev Urol. 2017 Nov;14(11):683–696.
  • Valkenburg KC, Graveel CR, Zylstra-Diegel CR, et al. Wnt/β-catenin signaling in normal and cancer stem cells. Cancers (Basel). 2011 Apr 19;3(2):2050–2079.
  • Zhang Z, Cheng L, Li J, et al. Inhibition of the Wnt/β-catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res. 2018 Jun 15;78(12):3147–3162.
  • Azad AA, Eigl BJ, Murray RN, et al. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol. 2015 Jan;67(1):23–29. doi: 10.1016/j.eururo.2014.06.045
  • Khalaf DJ, Annala M, Taavitsainen S, et al. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol. 2019 Dec;20(12):1730–1739. doi: 10.1016/S1470-2045(19)30688-6
  • Attard G, Murphy L, Clarke NW, et al. Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol. Lancet Oncol. 2023 May;24(5):443–456. doi: 10.1016/S1470-2045(23)00148-1
  • Al Nakouzi N, Le Moulec S, Albigès L, et al. Cabazitaxel remains active in patients progressing after docetaxel followed by novel androgen receptor pathway targeted therapies. Eur Urol. 2015 Aug;68(2):228–235. doi: 10.1016/j.eururo.2014.04.015
  • Lombard AP, Liu C, Armstrong CM, et al. ABCB1 mediates cabazitaxel-docetaxel cross-resistance in advanced prostate cancer. Mol Cancer Ther. 2017 Oct;16(10):2257–2266. doi: 10.1158/1535-7163.MCT-17-0179
  • Wang C, Aguilar A, Ojima I. Strategies for the drug discovery and development of taxane anticancer therapeutics. Expert Opin Drug Discov. 2022 Nov;17(11):1193–1207.
  • Linke D, Donix L, Peitzsch C, et al. Comprehensive evaluation of multiple approaches targeting ABCB1 to resensitize docetaxel-resistant prostate cancer cell lines. Int J Mol Sci. 2022 Dec 30;24(1):666.
  • Lima TS, Souza LO, Iglesias-Gato D, et al. Itraconazole reverts ABCB1-mediated docetaxel resistance in prostate cancer. Front Pharmacol. 2022;13:869461.
  • Shiota M, Zardan A, Takeuchi A, et al. Clusterin mediates TGF-β-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res. 2012 Oct 15;72(20):5261–5272.
  • Fu X, Liu J, Yan X, et al. Heat shock protein 70 and 90 family in prostate cancer. Life (Basel). 2022 Sep 26;12(10):1489. doi: 10.3390/life12101489.PMID:362949924
  • Thakur MK, Heilbrun LK, Sheng S, et al. A phase II trial of ganetespib, a heat shock protein 90 Hsp90) inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC)-a prostate cancer clinical trials consortium (PCCTC) study. Invest New Drugs. 2016 Feb;34(1):112–118. doi: 10.1007/s10637-015-0307-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.