3,144
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Temperature effect on Brazilian soybean yields, and farmers’ responses

ORCID Icon, , &
Article: 2173370 | Received 10 Aug 2021, Accepted 20 Jan 2023, Published online: 23 Feb 2023

References

  • Ainsworth, E. A., Leakey, A. D., Ort, D. R., & Long, S. P. (2008). FACE-ing the facts: Inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytologist, 179(1), 5–9. https://doi.org/10.1111/j.1469-8137.2008.02500.x
  • ANA & Embrapa. (2019). Levantamento da Agricultura Irrigada por Pivôs Centrais no Brasil (1985-2017). Second edition. Available at: <https://www.snirh.gov.br>.
  • Anderson, W., Seager, R., Baethgen, W., & Cane, M. (2017, May 28). Crop production variability in north and South America forced by life-cycles of the El nino southern oscillation. Agricultural and Forest Meteorology, 239, 151–165. https://doi.org/10.1016/j.agrformet.2017.03.008
  • Béné, C., Oosterveer, P., Lamotte, L., Brouwer, I. D., de Haan, S., Prager, S. D., … Khoury, C. K. (2019). When food systems meet sustainability–current narratives and implications for actions. World Development, 113, 116–130. https://doi.org/10.1016/j.worlddev.2018.08.011
  • Brasil. (2020). Projeções climáticas no Brasil. Ministério Da Ciência, Tecnologia e Inovação (MCTI); Instituto Nacional de Pesquisas Espaciais (INPE). Available at: <http://pclima.inpe.br >.
  • Brito, S. S. B., Cunha, A. P. M. A., Cunningham, C. C., Alvalá, R. C., Marengo, J. A., & Carvalho, M. A. (2018). Frequency, duration and severity of drought in the semiarid northeast Brazil region. International Journal of Climatology, 38(2), 517–529. https://doi.org/10.1002/joc.5225.
  • Brum, A. J. (1988). Modernização da agricultura : trigo e soja / Argemiro J. Brum. FIDENE, UNIJUI.
  • Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235–239. https://doi.org/10.1038/nature15725.
  • Chomitz, K., & Thomas, T. S. (2001). Geographic Patterns of Land Use and Land Intensity in the Brazilian Amazon. The World Bank Working Papers, No. 46. Washington, D.C.
  • Coe, M. T., Latrubesse, E. M., Ferreira, M. E., & Amsler, M. L. (2011). The effects of deforestation and climate variability on the streamflow of the araguaia river, Brazil. Biogeochemistry, 105, 119–131. https://doi.org/10.1007/s10533-011-9582-2.
  • Cohn, A. S., VanWey, L. K., Spera, S. A., & Mustard, J. F. (2016). Cropping frequency and area response to climate variability can exceed yield response. Nature Climate Change, 6(6), 601–604. https://doi.org/10.1038/nclimate2934.
  • Copernicus Climate Change Service (C3S). (2017). ERA5: Fifth generation of ECMWF atmospheric re-analyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), (date of access), https://cds.climate.copernicus.eu/cdsapp#!/home.
  • Costa, L. d. A. N. d., Sant’Anna, A. A., & Young, C. E. F. (2020). Barren Lives: Drought shocks and agricultural vulnerability in the Brazilian semi-arid. LACEA Working Paper Series.
  • Cunha, A. P. M. A., Zeri, M., Leal, K. D., Costa, L., Cuartas, L. A., Marengo, J. A., Tomasella, J., Vieira, R. M., Barbosa, A. A., Cunningham, C., Cal Garcia, J. V., Broedel, E., Alvalá, R., & Ribeiro-Neto, G. (2019). Extreme drought events over Brazil from 2011 to 2019. Atmosphere, 10(11), 642–662. https://doi.org/10.3390/atmos10110642.
  • Deschênes, O., & Greenstone, M. (2007). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. American Economic Review, 97(1), 354–385. https://doi.org/10.1257/aer.97.1.354.
  • Embrapa. (2020). Dinâmica agrícola no cerrado: análises e projeções. Édson Luis Bolfe, Edson Eyji Sano, Silvia Kanadani Campos (editors)– Brasília, DF: Embrapa, 2020.
  • Embrapa/GITE (2014). Matopiba geoweb: Divisões político-administrativas das Unidades Federativas do Brasil, Microrregiões e Municipios que compõem a região do MATOPIBA. Embrapa’s webpage. Available at: <http://mapas.cnpm.embrapa.br/matopiba2015/>.
  • Garrett, R. D., Lambin, E. F., & Naylor, R. L. (2013). Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land use Policy, 31, 385–396. https://doi.org/10.1016/j.landusepol.2012.08.002
  • Gomez-Zavaglia, A., Mejuto, J. C., & Simal-Gandara, J. (2020). Mitigation of emerging implications of climate change on food production systems. Food Research International, 134, 109256. https://doi.org/10.1016/j.foodres.2020.109256
  • Graesser, J., Aide, T. M., Grau, H. R., & Ramankutty, N. (2015). Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, https://doi.org/10.1088/1748-9326/10/3/034017
  • Hengl, T. (2018). Sand and clay content in%(kg/kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Version v0.2). Data set available at: 105281/zenodo.1476854 and https://doi.org/10.5281/zenodo.1476851.
  • IBGE. (2010). Polígonos dos biomas brasileiros. Available at: <http://www.metadados.inde.gov.br/geonetwork/srv/por/metadata.show?id = 75177&currTab = simple >.
  • IBGE. (2017). Polígonos dos municípios brasileiros. Available at: <https://www.ibge.gov.br/geociencias/organizacao-do-territorio/15774-malhas.html? = &t = downloads >.
  • IBGE. (2018). Produção Agrícola e Pecuária Municipal. Available at: <https://sidra.ibge.gov.br/>.
  • International Panel of Experts on Sustainable Food Systems (iPES. (2015). The New science of sustainable food systems: Overcoming barriers to food systems reform. International Panel of Experts on Sustainable Food Systems.
  • IPCC. (2020). Climate Change and Land - Summary for policy makers. In Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
  • Latrubesse, E. M., Arima, E., Ferreira, M. E., Nogueira, S. H., Wittmann, F., Dias, M. S., Dagosta, F. C. P., & Bayer, M. (2019). Fostering water resource governance and conservation in the Brazilian cerrado biome. Conservation Science and Practice, https://doi.org/10.1111/csp2.77
  • Laue, J. E., & Arima, E. Y. (2016). Spatially explicit models of land abandonment in the Amazon. Journal of Land Use Science, https://doi.org/10.1080/1747423X.2014.993341
  • Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M., & Börner, J. (2021). Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun, 12(1), 2591. https://doi.org/10.1038/s41467-021-22840-7
  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531. 29 Jul 2011
  • Long, S. P., Ainsworth, E. A., Leakey, A. D., & Morgan, P. B. (2005). Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2011–2020. https://doi.org/10.1098/rstb.2005.1749
  • Maneta, M. P., Torres, M., Wallender, W. W., Vosti, S., Kirby, M., Bassoi, L. H., & Rodrigues, L. N. (2009). Water demand and flows in the São francisco river basin (Brazil) with increased irrigation. Agricultural Water Management, 96(8), https://doi.org/10.1016/j.agwat.2009.03.008
  • Ministério do Meio Ambiente (MMA). (n.d). Sistema de Cadastro Ambiental Rural (CAR). Database from Serviço Florestal Brasileiro. Available at: <https://www.car.gov.br/publico/imoveis/index >. Access: Oct 27, 2020.
  • Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In Biodiversity hotspots (pp. 3–22). Springer.
  • Movilla-Pateiro, L., Mahou-Lago, X. M., Doval, M. I., & Simal-Gandara, J. (2021). Toward a sustainable metric and indicators for the goal of sustainability in agricultural and food production. Critical Reviews in Food Science and Nutrition, 61(7), 1108–1129. https://doi.org/10.1080/10408398.2020.1754161
  • Pires, G. F., Abrahão, G. M., Brumatti, L. M., Oliveira, L. J. C., Costa, M. H., Liddicoat, S., Kato, E., & Ladle, R. J. (2016). Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in northern Brazil. Agricultural and Forest Meteorology, 228–229. https://doi.org/10.1016/j.agrformet.2016.07.005
  • Pousa, R., Costa, M. H., Pimenta, F. M., Fontes, V. C., & Castro, M. (2019). Climate change and intense irrigation growth in western bahia, Brazil: The urgent need for hydroclimatic monitoring. Water (Switzerland), 11(5), https://doi.org/10.3390/w11050933
  • Richards, P., & Arima, E. (2018). Capital surpluses in the farming sector and agricultural expansion in Brazil. Environmental Research Letters, https://doi.org/10.1088/1748-9326/aace8e
  • Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349
  • Rodrigues, A. A., Macedo, M. N., Silvério, D. V., Maracahipes, L., Coe, M. T., Brando, P. M., & Bustamante, M. M. (2022). Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Global Change Biology, 28(22), 6807–6822.
  • Rueda, X., Garrett, R. D., & Lambin, E. F. (2017). Corporate investments in supply chain sustainability: Selecting instruments in the agri-food industry. Journal of Cleaner Production, 142, 2480–2492. https://doi.org/10.1016/j.jclepro.2016.11.026
  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. Crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(37), https://doi.org/10.1073/pnas.0906865106
  • Souza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sensing, 12(17), 2735. http://doi.org/10.3390/rs12172735
  • Spangler, K. R., Lynch, A. H., & Spera, S. A. (2017). Precipitation drivers of cropping frequency in the Brazilian cerrado: Evidence and implications for decision-making. Weather, Climate, and Society, 9(2), 201–213. Retrieved Jun 18, 2021, from https://journals.ametsoc.org/view/journals/wcas/9/2/wcas-d-16-0024_1.xml. https://doi.org/10.1175/WCAS-D-16-0024.1
  • Spera, S. a., Cohn, A. S., VanWey, L. K., Mustard, J. F., Rudorff, B. F., Risso, J., & Adami, M. (2014). Recent cropping frequency, expansion, and abandonment in mato grosso, Brazil had selective land characteristics. Environmental Research Letters, 9(6), 64010. https://doi.org/10.1088/1748-9326/9/6/064010
  • Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N., & Mustard, J. F. (2016). Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Change Biology, https://doi.org/10.1111/gcb.13298
  • Vayda, A. P. (1983). Progressive contextualization: Methods for research in human ecology. Human Ecology, 11(3), 265–281. https://doi.org/10.1007/BF00891376
  • Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(1), 195–222. https://doi.org/10.1146/annurev-environ-020411-130608
  • Wooldridge, J. M. (2013). Introductory econometrics: A modern approach (5th ed.). South-Western, Cengage Learning.
  • Yamada, T. (2006). The cerrado of Brazil: A success story of production on acid soils. Soil Science & Plant Nutrition, 51(5), 617–620. https://doi.org/10.1111/j.1747-0765.2005.tb00076.x
  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., ... & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114