2,180
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Do attributes of happy seeder technology influence its adoption speed? An investigation using duration analysis in Northern India

ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2198324 | Received 08 Feb 2022, Accepted 29 Mar 2023, Published online: 19 Apr 2023

References

  • Abdulai, A., & Huffman, W. (2014). The adoption and impact of soil and water conservation technology: An endogenous switching regression application. Land Economics, 90(1), 26–43. https://doi.org/10.3368/le.90.1.26
  • Abdulai, A., Huffman, W. E., & Curtiss, C. F. (2005). The diffusion of new agricultural technologies: The case of crossbred-cow technology in Tanzania. American Journal of Agricultural Economics, 87(3), 645–659. https://doi.org/10.1111/j.1467-8276.2005.00753.x
  • Alcon, F., de Miguel, M. D., & Burton, M. (2011). Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technological Forecasting and Social Change, 78(6), 991–1001. https://doi.org/10.1016/j.techfore.2011.02.001
  • Allison, P. D. (2010). Survival analysis using SAS: A practical guide. SAS Publication. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  • Bagheri, A., Bondori, A., & Damalas, C. A. (2019). Modeling cereal farmers’ intended and actual adoption of integrated crop management (ICM) practices. Journal of Rural Studies, 70, 58–65. https://doi.org/10.1016/j.jrurstud.2019.05.009
  • Batz, F.-J., Peters, K. J., & Janssen, W. (1999). The influence of technology characteristics on the rate and speed of adoption. Agricultural Economics, 21(2), 121–130. https://doi.org/10.1111/j.1574-0862.1999.tb00588.x
  • Beyene, A. D., & Kassie, M. (2015). Speed of adoption of improved maize varieties in Tanzania: An application of duration analysis. Technological Forecasting and Social Change, 96, 298–307. https://doi.org/10.1016/j.techfore.2015.04.007
  • Bhattacharyya, P., Bisen, J., Bhaduri, D., Priyadarsini, S., Munda, S., Chakraborti, M., Adak, T., Kumar, S., & Nimbrayan, P. (2021). Turn the wheel from waste to wealth: Economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. Science of The Total Environment, 775, 145896. https://doi.org/10.1016/j.scitotenv.2021.145896
  • Bhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019). Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 16(5), 832. https://doi.org/10.3390/ijerph16050832
  • Burton, M., Rigby, D., & Young, T. (2003). Modelling the adoption of organic horticultural technology in the UK using duration analysis. The Australian Journal of Agricultural and Resource Economics, 47(1), 29–54. https://doi.org/10.1111/1467-8489.00202
  • Canales, E., Bergtold, J.S., Williams, J.R. (2017). Modeling the factors affecting farmers’ timing of adoption of in-field conservation cropping practices. Chicago. https://doi.org/10.22004/AG.ECON.258558
  • Chakrabarti, S., Khan, M. T., Kishore, A., Roy, D., & Scott, S. P. (2019). Risk of acute respiratory infection from crop burning in India: Estimating disease burden and economic welfare from satellite and national health survey data for 250000 persons. International Journal of Epidemiology, 48(4), 1113–1124. https://doi.org/10.1093/ije/dyz022
  • Chaudhary, A., Chhokar, R. K., Yadav, D. B., Sindhu, V. K., Ram, H., Rawal, S., Khedwal, R. S., Sharma, R. K., & Gill, S. C. (2019). In-situ paddy straw management practices for higher resource use efficiency and crop productivity in Indo-Gangetic Plains (IGP) of India. Wheat and Barley Research, 11(3), 172–198. https://doi.org/10.25174/2249-4065/2019/96323
  • Chawala, P., & Sandhu, H. A. S. (2020). Stubble burn area estimation and its impact on ambient air quality of Patiala & Ludhiana district, Punjab, India. Heliyon, 6(1), e03095. https://doi.org/10.1016/j.heliyon.2019.e03095
  • Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society Series B, 34(2), 187–220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
  • Dadi, L., Burton, M., & Ozanne, A. (2004). Duration analysis of technological adoption in Ethiopian agriculture. Journal of Agricultural Economics, 55(3), 613–631. https://doi.org/10.1111/j.1477-9552.2004.tb00117.x
  • D’Antoni, J. M., Mishra, A. K., & Joo, H. (2012). Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Computers and Electronics in Agriculture, 87, 121–128. https://doi.org/10.1016/j.compag.2012.05.017
  • D’Emden, F. H., Llewellyn, R. S., & Burton, M. P. (2006). Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technological Forecasting and Social Change, 73(6), 630–647. https://doi.org/10.1016/j.techfore.2005.07.003
  • Farrow, K., Grolleau, G., & Ibanez, L. (2017). Social norms and pro-environmental behavior: A review of the evidence. Ecological Economics, 140, 1–13. https://doi.org/10.1016/j.ecolecon.2017.04.017
  • Fuglie, K. O., & Kascak, C. A. (2001). Adoption and diffusion of natural-resource-conserving agricultural technology. Review of Agricultural Economics, 23(2), 386–403. https://doi.org/10.1111/1467-9353.00068
  • Gao, Y., Zhao, D., Yu, L., & Yang, H. (2019). Duration analysis on the adoption behavior of green control techniques. Environmental Science and Pollution Research, 26(7), 6319–6327. https://doi.org/10.1007/s11356-018-04088-9
  • GoI. (2020). Central sector scheme on promotion of agricultural mechanization for in-situ management of crop residue in the states of Punjab, Haryana, Uttar Pradesh and Nct of Delhi. Mechanization and Technology Division, Department of Agriculture, Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India. https://agricoop.nic.in/sites/default/files/Guidelines-2019_%28revised%29_of_Straw_Management_Scheme_0.pdf
  • GOP. (2021). Statistical Abstract of Punjab. Economic and Statistical Organization, Government of Punjab (India). https://esopb.gov.in/static/PDF/Abstract2021.pdf. https://esopb.gov.in/static/PDF/Abstract2021.pdf
  • Grabowski, P. P., Kerr, J. M., Haggblade, S., & Kabwe, S. (2016). Determinants of adoption and disadoption of minimum tillage by cotton farmers in eastern Zambia. Agriculture, Ecosystems & Environment, 231, 54–67. https://doi.org/10.1016/j.agee.2016.06.027
  • Guo, S. (2010). Survival analysis, pocket guides to social work research methods. Oxford University Press.
  • Gupta, N. (2019). Paddy residue burning in Punjab: Understanding farmers ‘ perspectives and rural air pollution. CEEW (The Council on Energy, Environment and Water).
  • Henderson, R. M., & Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35(1), 9–30. https://doi.org/10.2307/2393549
  • IANS. (2021). Punjab farm fires till now less than last year’s, but more than 2019. Bus. Stand. News.
  • Jain, N., Bhatia, A., & Pathak, H. (2014). Emission of air pollutants from crop residue burning in India. Aerosol and Air Quality Research, 14(1), 422–430. https://doi.org/10.4209/aaqr.2013.01.0031
  • Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., & Kayetha, V. (2019). Connecting crop productivity, residue fires and air quality over Northern India. Scientific Reports, 9(1), 16594. https://doi.org/10.1038/s41598-019-52799-x
  • Kallas, Z., Serra, T., & Gil, J. M. (2009). Farmer’s objectives as determinant factors of organic farming adoption. 113th EAAE Seminar “A Resilient European Food Industry and Food Chain in a Challenging World.” Chania, Greece.
  • Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.1080/01621459.1958.10501452
  • Kaur, M., Narang, M. K., Bhalla, J. S., Dhaliwal, R. K., & Sharma, S. (2021). Impact assessment of Happy Seeder Technology and its popularization among the Farmers of Punjab. Ludhiana, India.
  • Kaushal, L. A. (2020). Examining the policy-practice gap – The issue of crop burning induced particulate matter pollution in northwest India. Ecosystem Health and Sustainability, 6, 18646. https://doi.org/10.1080/20964129.2020.1846460
  • Keil, A., D’souza, A., & McDonald, A. (2017). Zero-tillage is a proven technology for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: What determines farmer awareness and adoption? Food Security, 9(4), 723–743. https://doi.org/10.1007/s12571-017-0707-x
  • Keil, A., Krishnapriya, P. P., Mitra, A., Jat, M. L., Sidhu, H. S., Krishna, V. V., & Shyamsundar, P. (2021). Changing agricultural stubble burning practices in the Indo-Gangetic plains: Is the happy seeder a profitable alternative? International Journal of Agricultural Sustainability, 19(2), 128–151. https://doi.org/10.1080/14735903.2020.1834277
  • Kiefer, N. M. (1988). Economic duration data and hazard functions. J. Econ. Lit, 26(2), 646–679.
  • Kleinbaum, D. G., & Klein, M. (2005). Survival analysis: A self-learning text (2nd ed). Statistics for Biology and Health. Springer Science + Business Media, Inc. https://doi.org/10.2307/2965741
  • Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1), 25–48. https://doi.org/10.1016/j.foodpol.2006.01.003
  • Kuhfuss, L., Préget, R., Thoyer, S., & Hanley, N. (2016). Nudging farmers to enrol land into agri-environmental schemes: The role of a collective bonus. European Review of Agricultural Economics, 43(4), 609–636. https://doi.org/10.1093/erae/jbv031
  • Kumar, A., Prasad, K., Kushwaha, R. R., Rajput, M. M., & Sachan, B. S. (2010). Determinants influencing the acceptance of resource conservation technology : case of zero-tillage in rice-wheat farming systems in Uttar Pradesh, Bihar and Haryana states. Indian Journal of Agricultural Economics, 65(3), 448–460. https://doi.org/10.22004/ag.econ.204696
  • Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomimc and environmental implications of agricultural residue burning: A case study of Punjab, India. Springer Open.
  • Kurinji, L. S., & Kumar, S. (2021). Is ex-situ crop residue management a scalable solution to stubble burning ? A punjab case study. Council on Energy, Environment and Water.
  • Kurinji, L. S., & Prakash, S. (2021). Why paddy stubble continues to be burnt in Punjab ? Meeting challenges with solutions. Council on Energy, Environment and Water.
  • Lapple, D. (2010). Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. Journal of Agricultural Economics, 61(3), 697–714. https://doi.org/10.1111/j.1477-9552.2010.00260.x
  • Lapple, D., & Kelley, H. (2015). Spatial dependence in the adoption of organic drystock farming in Ireland. European Review of Agricultural Economics, 42(2), 315–337. https://doi.org/10.1093/erae/jbu024
  • Li, R., Chen, W., Zhao, H., Wu, X., Zhang, M., Tong, D. Q., & Xiu, A. (2020). Inventory of atmospheric pollutant emissions from burning of crop residues in China based on satellite-retrieved farmland data. Chinese Geographical Science, 30(2), 266–278. https://doi.org/10.1007/s11769-020-1110-7
  • Lin, M., & Begho, T. (2022). Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses. Journal of Environmental Management, 314, 115104. https://doi.org/10.1016/j.jenvman.2022.115104
  • Lohan, S. K., Jat, H. S., Yadav, A. K., Sidhu, H. S., Jat, M. L., Choudhary, M., Peter, J. K., & Sharma, P. C. (2018). Burning issues of paddy residue management in north-west states of India. Renewable and Sustainable Energy Reviews, 81, 693–706. https://doi.org/10.1016/j.rser.2017.08.057
  • Lopes, A. A., Tasneem, D., & Viriyavipart, A. (2023). Nudges and compensation: Evaluating experimental evidence on controlling rice straw burning. Ecological Economics, 204, 107677. https://doi.org/10.1016/j.ecolecon.2022.107677
  • Lopes, A. A., Viriyavipart, A., & Tasneem, D. (2020). The role of social influence in crop residue management: Evidence from northern India. Ecological Economics, 169, 106563. https://doi.org/10.1016/j.ecolecon.2019.106563
  • Lunduka, R., Fisher, M., & Snapp, S. (2012). Could farmer interest in a diversity of seed attributes explain adoption plateaus for modern maize varieties in Malawi? Food Policy, 37(5), 504–510. https://doi.org/10.1016/j.foodpol.2012.05.001
  • Murage, A. W., Obare, G., Chianu, J., Amudavi, D. M., Pickett, J., & Khan, Z. R. (2011). Duration analysis of technology adoption effects of dissemination pathways: A case of “push-pull” technology for control of Striga weeds and stemborers in Western Kenya. Crop Protection, 30(5), 531–538. https://doi.org/10.1016/j.cropro.2010.11.009
  • Mutsvangwa-Sammie, E. P., Manzungu, E., & Siziba, S. (2018). Key attributes of agricultural innovations in semi-arid smallholder farming systems in south-west Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 105, 125–135. https://doi.org/10.1016/j.pce.2018.03.001
  • NAAS. (2017). Innovative viable solution to rice residue burning in rice-wheat cropping system through concurrent use of super straw management system-fitted combines and turbo happy seeder. Policy Brief No. 2. New Delhi.
  • Ntshangase, N. L., Muroyiwa, B., & Sibanda, M. (2018). Farmers’ perceptions and factors influencing the adoption of no-till conservation agriculture by small-scale farmers in Zashuke, KwaZulu-Natal Province. Sustainability, 10(2), 555. https://doi.org/10.3390/su10020555
  • PAU. (2021). Package of practices for crops of Punjab: Rabi. Punjab Agricultural University.
  • Peshin, R. (2013). Farmers’ adoptability of integrated pest management of cotton revealed by a new methodology. Agronomy for Sustainable Development, 33(3), 563–572. https://doi.org/10.1007/s13593-012-0127-4
  • PIB. (2021). Agricultural mechanization for in-situ management of crop residue [WWW Document]. Press Inf. Bur. Gov. India. Retrieved October 31, 2021, from https://pib.gov.in/Pressreleaseshare.aspx?PRID = 1707021.
  • Pillai, S. (2021). Experts fear last-minute spike in farm fires this year. Hindustan Times.
  • Porichha, G. K., Hu, Y., Rao, K. T. V., & Xu, C. C. (2021). Crop residue management in India: Stubble burning vs. Other utilizations including bioenergy. Energies, 14(14), 4281–4217. https://doi.org/10.3390/en14144281
  • PRSC. (2021). Crop residue burning information and management system [WWW Document]. http://202.164.39.166/residue/Year_Wise.aspx
  • PTI. (2021). IARI data shows spike in farm fires post monsoon in Punjab and Haryana – The Hindu. The Hindu.
  • Ravindra, K., Singh, T., & Mor, S. (2019). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production, 208, 261–273. https://doi.org/10.1016/j.jclepro.2018.10.031
  • Reddy, A.A. (2020). How can we solve the problem of stubble burning? [WWW Document]. Wire. Retrieved October 31, 2021, from https://science.thewire.in/environment/stubble-burning-punjab-haryana-rice-harvesting-wheat-sowing-delhi-air-pollution/.
  • Reimer, A. P., Weinkauf, D. K., & Prokopy, L. S. (2012). The influence of perceptions of practice characteristics: An examination of agricultural best management practice adoption in two Indiana watersheds. Journal of Rural Studies, 28(1), 118–128. https://doi.org/10.1016/j.jrurstud.2011.09.005
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed). Free Press, Simon & Schuster, Inc.
  • Rogers, E. M., & Shoemaker, F. F. (1971). Communication of innovations: A cross-cultural approach (2nd ed). Free Press.
  • Roy, P. (2015). A comparative study on paddy straw management in Punjab and West Bengal. Punjab Agricultural University.
  • Roy, P., Kaur, M., Burman, R. R., Sharma, J. P., & Roy, T. N. (2018). Determinants of paddy straw management decision of farmers in Punjab. Journal of Community Mobilization Sustainable Development, 13(2), 203–210.
  • Saunders, C., Davis, L., & Pearce, D. (2012). Rice–wheat cropping systems in India and Australia, and development of the ‘happy seeder. ACIAR Impact Assessment Series Report, 77, 24–28. https://www.aciar.gov.au/sites/default/files/legacy/node/14496/ias077_rice_wheat_cropping_systems_in_india_and_12036.pdf
  • Shyamsundar, P., Springer, N.P., Tallis, H., Polasky, S., Jat, M.L., Sidhu, H.S., Krishnapriya, P.P., Skiba, N., Ginn, W., Ahuja, V., Cummins, J., Datta, I., Dholakia, H.H., Dixon, J., Gerard, B., Gupta, R., Hellmann, J., Jadhav, A., Jat, H.S., … , Somanathan, R., 2019. Fields on fire: Alternatives to crop residue burning in India. Science, 365(80), 536–538. https://doi.org/10.1126/science.aaw4085
  • Sidhu, H. S., Singh, M., Humphreys, E., Singh, Y., Singh, B., Dhillon, S. S., Blackwell, J., Bector, V., Singh, M., & Singh, S. (2007). The happy seeder enables direct drilling of wheat into rice stubble. Australian Journal of Experimental Agriculture, 47(7), 844–854. https://doi.org/10.1071/EA06225
  • Sidibe, A. (2005). Farm-level adoption of soil and water conservation techniques in northern Burkina Faso. Agricultural Water Management, 71(3), 211–224. https://doi.org/10.1016/j.agwat.2004.09.002
  • Singh, R. (1972). A behavioral contingency theory of adoption and diffusion of agricultural technology in less developed countries. University of Wisconsin.
  • Singh, R. P., Dhaliwal, H. S., Humphreys, E., Singh, M., Singh, Y., & Blackwell, J. (2008). Economic assessment of the Happy Seeder for rice-wheat systems in Punjab, India. AARES 52th Annual Conference. Canberra, Australia.
  • Supe, S. V., & Singh, S. N. (1976). Dynamics of rational behaviour of Indian farmers. New Heights Publisher.
  • Turiano, N. A. (2016). Survival analysis. The Encyclopedia of Adulthood and Aging, 1–5. https://doi.org/10.1002/9781118528921.wbeaa148
  • Venkatramanan, V., Shah, S., Rai, A. K., & Prasad, R. (2021). Nexus between crop residue burning, bioeconomy and sustainable development goals over north-western India. Frontiers in Energy Research, 8, 614212. https://doi.org/10.3389/fenrg.2020.614212