1,512
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The design and implementation of a distributed agricultural service system for smallholder farmers in China

, , , , , & show all
Article: 2221108 | Received 01 Jun 2022, Accepted 25 May 2023, Published online: 24 Jun 2023

References

  • Abokyi, E., Strijker, D., Asiedu, K. F., & Daams, M. N. (2020). The impact of output price support on smallholder farmers’ income: Evidence from maize farmers in Ghana. Heliyon, 6(9), Article e05013. https://doi.org/10.1016/j.heliyon.2020.e05013
  • Bacenetti, J., Paleari, L., Tartarini, S., Vesely, F. M., Foi, M., Movedi, E., Ravasi, R. A., Bellopede, V., Durello, S., Ceravolo, C., Amicizia, F., & Confalonieri, R. (2020). May smart technologies reduce the environmental impact of nitrogen fertilization? A case study for paddy rice. Science of the Total Environment, 715, Article 136956. https://doi.org/10.1016/j.scitotenv.2020.136956
  • Chen, L. (2003). A new neuro-fuzzy system and its implementation of “local simple remote complex” control principle. Master, Institute of Automation, Chinese Academy of Sciences. http://www.wanfangdata.com.cn/details/detail.do?_type = degree&id = Y545323.
  • Cisternas, I., Velásquez, I., Caro, A., & Rodríguez, A. (2020). Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176, Article 105626. https://doi.org/10.1016/j.compag.2020.105626
  • Colezea, M., Musat, G., Pop, F., Negru, C., Dumitrascu, A., & Mocanu, M. (2018). CLUeFARM: Integrated web-service platform for smart farms. Computers and Electronics in Agriculture, 154, 134–154. https://doi.org/10.1016/j.compag.2018.08.015
  • Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W., Mi, G., Miao, Y., & Li, X. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555(7696), 363–366. https://doi.org/10.1038/nature25785
  • de Reffye, P., Hu, B., Kang, M., Letort, V., & Jaeger, M. (2021). Two decades of research with the GreenLab model in agronomy. Annals of Botany, 127(3), 281–295. https://doi.org/10.1093/aob/mcaa172
  • Ding, J., Jia, X., Zhang, W., & Klerkx, L. (2022). The effects of combined digital and human advisory services on reducing nitrogen fertilizer use: Lessons from China’s national research programs on low carbon agriculture. International Journal of Agricultural Sustainability, 20(6), 1136–1149. https://doi.org/10.1080/14735903.2022.2057643
  • Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32(2), 567–580. https://doi.org/10.1007/s13593-011-0037-x
  • Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything. Cisco Internet Business Solutions Group (IBSG), 1, 1–11. http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
  • Fabregas, R., Kremer, M., & Schilbach, F. (2019). Realizing the potential of digital development: The case of agricultural advice. Science, 366(6471), Article eaay3038. https://doi.org/10.1126/science.aay3038
  • Fan, M., Kang, M., Wang, X., Hua, J., He, C., & Wang, F.-Y. (2022). Parallel crop planning based on price forecast. International Journal of Intelligent Systems, 37(8), 4772–4793. https://doi.org/10.1002/int.22739
  • Fan, X.-R., Kang, M., Heuvelink, E., de Reffye, P., & Hu, B.-G. (2015). A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth. Ecological Modelling, 312, 363–373. https://doi.org/10.1016/j.ecolmodel.2015.06.006
  • Fan, X.-R., Wang, X., Kang, M., Hua, J., Guo, S., de Reffye, P., & Hu, B.-G. (2018). A knowledge-and-data-driven modeling approach for simulating plant growth and the dynamics of CO2/O2 concentrations in a closed system of plants and humans by integrating mechanistic and empirical models. Computers and Electronics in Agriculture, 148, 280–290. https://doi.org/10.1016/j.compag.2018.03.006
  • Fantana, N. L., Riedel, T., Schlick, J., Ferber, S., & Svensson, S. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers Series in Communications.
  • Goap, A., Sharma, D., Shukla, A. K., & Rama Krishna, C. (2018). An IoT based smart irrigation management system using machine learning and open source technologies. Computers and Electronics in Agriculture, 155, 41–49. https://doi.org/10.1016/j.compag.2018.09.040
  • Haggar, J., Nelson, V., Lamboll, R., & Rodenburg, J. (2021). Understanding and informing decisions on sustainable agricultural intensification in Sub-Saharan Africa. International Journal of Agricultural Sustainability, 19(5-6), 349–358. https://doi.org/10.1080/14735903.2020.1818483
  • Higgins, V., Bryant, M., Howell, A., & Battersby, J. (2017). Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. Journal of Rural Studies, 55, 193–202. https://doi.org/10.1016/j.jrurstud.2017.08.011
  • Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., & Boyle, D. (2014). From machine-to-machine to the internet of things: Introduction to a new age of intelligence. Academic Press. https://doi.org/10.1016/C2012-0-03263-2
  • Hua, J., Wang, X., Kang, M., Wang, H., & Fan, X.-R. (2017). Prediction of crop phenology – a component of parallel agriculture management. Chinese Automation Congress & Intelligent Manufacturing International Conference (CAC2017 & CIMIC2017), Jinan, Shandong.
  • Huang, Y. (2019). Perspectives and experiences on the development and innovation of agricultural aviation and precision agriculture from the Mississippi Delta and recommendations for China. Smart Agriculture, 1(4), 12–30. https://doi.org/10.12133/j.smartag.2019.1.4.201909-SA003
  • Jayaraman, P., Yavari, A., Georgakopoulos, D., Morshed, A., & Zaslavsky, A. (2016). Internet of things platform for smart farming: Experiences and lessons learnt. Sensors, 16(11), Article 1884. https://doi.org/10.3390/s16111884
  • Jiao, X.-Q., Zhang, H.-Y., Ma, W.-Q., Wang, C., Li, X.-L., & Zhang, F.-S. (2019). Science and technology backyard: A novel approach to empower smallholder farmers for sustainable intensification of agriculture in China. Journal of Integrative Agriculture, 18(8), 1657–1666. https://doi.org/10.1016/S2095-3119(19)62592-X
  • Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H., Thomas, F., Alonistioti, N., & Kormentzas, G. (2012). Farm management systems and the future internet era. Computers and Electronics in Agriculture, 89, 130–144. https://doi.org/10.1016/j.compag.2012.09.002
  • Kaloxylos, A., Groumas, A., Sarris, V., Katsikas, L., Magdalinos, P., Antoniou, E., Politopoulou, Z., Wolfert, S., Brewster, C., Eigenmann, R., & Maestre Terol, C. (2014). A cloud-based farm management system: Architecture and implementation. Computers and Electronics in Agriculture, 100, 168–179. https://doi.org/10.1016/j.compag.2013.11.014
  • Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37. https://doi.org/10.1016/j.compag.2017.09.037
  • Kang, M., Fan, X.-R., Hua, J., Wang, H., Wang, X., & Wang, F.-Y. (2018). Managing traditional solar greenhouse with CPSS: A just-for-fit philosophy. IEEE Transactions on Cybernetics, 48(12), 3371–3380. https://doi.org/10.1109/TCYB.2018.2858264
  • Kang, M., Heuvelink, E., Carvalho, S. M. P., & de Reffye, P. (2012). A virtual plant that responds to the environment like a real one: The case for chrysanthemum. New Phytologist, 195(2), 384–395. https://doi.org/10.1111/j.1469-8137.2012.04177.x
  • Kang, M., & Wang, F.-Y. (2017). From parallel plants to smart plants: Intelligent control and management for plant growth. IEEE/CAA Journal of Automatica Sinica, 4(2), 161–166. https://doi.org/10.1109/JAS.2017.7510487
  • Kang, M., Wang, X., Wang, H., Hua, J., de Reffye, P., & Wang, F.-Y. (2023). The development of AgriVerse: Past, present, and future. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1–10. https://doi.org/10.1109/TSMC.2023.3271396
  • Kang, M., Yang, L., Zhang, B.-G., & de Reffye, P. (2011). Correlation between dynamic tomato fruit-set and source–sink ratio: A common relationship for different plant densities and seasons? Annals of Botany, 107(5), 805–815. https://doi.org/10.1093/aob/mcq244
  • Katzin, D., van Mourik, S., Kempkes, F., & van Henten, E. J. (2020). Greenlight – An open source model for greenhouses with supplemental lighting: Evaluation of heat requirements under LED and HPS lamps. Biosystems Engineering, 194, 61–81. https://doi.org/10.1016/j.biosystemseng.2020.03.010
  • Kieti, J., Waema, T. M., Ndemo, E. B., Omwansa, T. K., & Baumüller, H. (2021). Sources of value creation in aggregator platforms for digital services in agriculture - insights from likely users in Kenya. Digital Business, 1(2), Article 100007. https://doi.org/10.1016/j.digbus.2021.100007
  • Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences, 90-91(1), Article 100315. https://doi.org/10.1016/j.njas.2019.100315
  • Koster, H. R. A., van Ommeren, J., & Volkhausen, N. (2021). Short-term rentals and the housing market: Quasi-experimental evidence from Airbnb in Los Angeles. Journal of Urban Economics, 124, Article 103356. https://doi.org/10.1016/j.jue.2021.103356
  • Lau, H. C., & Li, B. (2021). Solving the winner determination problem for online B2B transportation matching platforms. Transportation Research Part E: Logistics and Transportation Review, 150, Article 102324. https://doi.org/10.1016/j.tre.2021.102324
  • Lee, M., Kim, H., & Yoe, H. (2017). Intelligent environment management system for controlled horticulture. 2017 4th NAFOSTED Conference on Information and Computer Science.
  • Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Development, 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041
  • Mata, D. A., & Botto, J. F. (2011). Photoperiod, light, and temperature requirements to control plant architecture and flowering time in Salvia exserta. The Journal of Horticultural Science and Biotechnology, 86(4), 408–414. https://doi.org/10.1080/14620316.2011.11512782
  • McConnell, M. D. (2019). Bridging the gap between conservation delivery and economics with precision agriculture. Wildlife Society Bulletin, 43(3), 391–397. https://doi.org/10.1002/wsb.995
  • Mondal, P., & Basu, M. (2009). Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Progress in Natural Science, 19(6), 659–666. https://doi.org/10.1016/j.pnsc.2008.07.020
  • Moreno-Miranda, C., & Dries, L. (2022). Assessing the sustainability of agricultural production - a cross-sectoral comparison of the blackberry, tomato and tree tomato sectors in Ecuador. International Journal of Agricultural Sustainability, 20(7), 1373–1396. https://doi.org/10.1080/14735903.2022.2082764
  • Musat, G.-A., Colezea, M., Pop, F., Negru, C., Mocanu, M., Esposito, C., & Castiglione, A. (2018). Advanced services for efficient management of smart farms. Journal of Parallel and Distributed Computing, 116, 3–17. https://doi.org/10.1016/j.jpdc.2017.10.017
  • Naika, M. B. N., Kudari, M., Devi, M. S., Sadhu, D. S., & Sunagar, S. (2021). Chapter 8 - Digital extension service: Quick way to deliver agricultural information to the farmers. In C. M. Galanakis (Ed.), Food technology disruptions (pp. 285–323). Academic Press. https://doi.org/10.1016/B978-0-12-821470-1.00006-9
  • Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131. https://doi.org/10.1016/j.compag.2016.04.003
  • Oliver, S. T., González-Pérez, A., & Guijarro, J. H. (2018). An IoT proposal for monitoring vineyards called SEnviro for agriculture. Proceedings of the 8th International Conference on the Internet of Things, Santa Barbara, California, USA. https://doi.org/10.1145/3277593.3277625
  • Pallottino, F., Figorilli, S., Cecchini, C., & Costa, C. (2021). Light drones for basic In-field phenotyping and precision farming applications: RGB tools based on image analysis. In P. Tripodi (Ed.), Crop breeding. Methods in molecular biology (Vol. 2264, pp. 269–278). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1201-9_18
  • Pathak, H. S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20(6), 1292–1316. https://doi.org/10.1007/s11119-019-09653-x
  • Pavón-Pulido, N., López-Riquelme, J. A., Torres, R., Morais, R., & Pastor, J. A. (2017). New trends in precision agriculture: A novel cloud-based system for enabling data storage and agricultural task planning and automation. Precision Agriculture, 18(6), 1038–1068. https://doi.org/10.1007/s11119-017-9532-7
  • Popović, T., Latinović, N., Pešić, A., Zečević, Ž, Krstajić, B., & Djukanović, S. (2017). Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Computers and Electronics in Agriculture, 140, 255–265. https://doi.org/10.1016/j.compag.2017.06.008
  • Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science, 362(6417), Article eaav0294. https://doi.org/10.1126/science.aav0294
  • Pretty, J., Attwood, S., Bawden, R., van den Berg, H., Bharucha, Z. P., Dixon, J., Flora, C. B., Gallagher, K., Genskow, K., Hartley, S. E., Ketelaar, J. W., Kiara, J. K., Kumar, V., Lu, Y., MacMillan, T., Maréchal, A., Morales-Abubakar, A. L., Noble, A., Prasad, P. V. V., … Yang, P. (2020). Assessment of the growth in social groups for sustainable agriculture and land management. Global Sustainability, 3, Article e23. https://doi.org/10.1017/sus.2020.19
  • Raducu, I., Bojan, V., Pop, F., Mocanu, M., & Cristea, V. (2015). Real-time alert service for cyber-infrastructure environments. 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC).
  • Rajalakshmi, P., & Devi Mahalakshmi, S. (2016). IOT based crop-field monitoring and irrigation automation. 2016 10th International Conference on Intelligent Systems and Control (ISCO).
  • Rettore de Araujo Zanella, A., da Silva, E., & Pessoa Albini, L. C. (2020). Security challenges to smart agriculture: Current state, key issues, and future directions. Array, 8, Article 100048. https://doi.org/10.1016/j.array.2020.100048
  • Rossi, V., Salinari, F., Poni, S., Caffi, T., & Bettati, T. (2014). Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Computers and Electronics in Agriculture, 100, 88–99. https://doi.org/10.1016/j.compag.2013.10.011
  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489. https://doi.org/10.1038/nature16961
  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–359. https://doi.org/10.1038/nature24270
  • Sinha, B., & Dhanalakshmi, R. (2022). Recent advancements and challenges of internet of things in smart agriculture: A survey. Future Generation Computer Systems, 126, 169–184. https://doi.org/10.1016/j.future.2021.08.006
  • Steinke, J., van Etten, J., Müller, A., Ortiz-Crespo, B., van de Gevel, J., Silvestri, S., & Priebe, J. (2021). Tapping the full potential of the digital revolution for agricultural extension: An emerging innovation agenda. International Journal of Agricultural Sustainability, 19(5-6), 549–565. https://doi.org/10.1080/14735903.2020.1738754
  • Su, Y., & Wang, X. (2021). Innovation of agricultural economic management in the process of constructing smart agriculture by big data. Sustainable Computing: Informatics and Systems, 31, Article 100579. https://doi.org/10.1016/j.suscom.2021.100579
  • The Third National Agricultural Census Data Report. 2017. http://www.stats.gov.cn/english/pdf/202010/P020201012325158189120.pdf.
  • Tran, M. Q., Phan, T., Takahashi, A., Thanh, T., Duy, S., Thanh, M., & Hong, C. (2017). A cost-effective smart farming system with knowledge base. https://doi.org/10.1145/3155133.3155151
  • Trendov, N., Varas, S., & Zeng, M. (2018). Digital technologies in agriculture and rural areas status report. https://www.researchgate.net/publication/344041500.
  • Trilles, S., Torres-Sospedra, J., Belmonte, Ó, Zarazaga-Soria, F. J., González-Pérez, A., & Huerta, J. (2020). Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease. Sustainable Computing: Informatics and Systems, 28, Article 100309. https://doi.org/10.1016/j.suscom.2019.01.011
  • Tsai, M.-C., Wang, J.-F., & Chen, Y.-T. (2021). Effect of social identity on supply chain technology adoption of small businesses. Asia Pacific Management Review, 26(3), 129–136. https://doi.org/10.1016/j.apmrv.2020.12.001
  • Vandenburg, M. W. (1893). Nature's rotation of crops. Science, ns-22(549), 77–78. https://doi.org/10.1126/science.ns-22.549.77.c
  • Wang, F.-Y. (2012). A big-data perspective on AI: Newton, Merton, and analytics intelligence. IEEE Intelligent Systems, 27(5), 2–4. https://doi.org/10.1109/MIS.2012.91
  • Wang, F.-Y. (2015). CC 5.0:Intelligent command and control systems in the parallel AGE. Journal of Command & Control, 1(1), 107–120. http://www.jc2.org.cn/CN/Y2015/V1/I1/107
  • Wang, G., Yin, J., Hossain, M. S., & Muhammad, G. (2021). Incentive mechanism for collaborative distributed learning in artificial intelligence of things. Future Generation Computer Systems, 125, 376–384. https://doi.org/10.1016/j.future.2021.06.015
  • Wang, X., Kang, M., Fan, X.-R., Yang, L., Zhang, B.-G., Huang, S.-W., de Reffye, P., & Wang, F.-Y. (2020). What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid? Journal of Integrative Agriculture, 19(7), 1789–1801. https://doi.org/10.1016/S2095-3119(20)63218-X
  • Wang, X., Kang, M., Sun, H., de Reffye, P., & Wang, F.-Y. (2022). DeCASA in AgriVerse: Parallel Agriculture for Smart Villages in Metaverses. IEEE/CAA Jounal of Automatica Sinica, 9(12), 2055–2062. https://doi.org/10.1109/JAS.2022.106103
  • Weng, Y., Wang, X., Hua, J., Wang, H., & Kang, M. (2020). Greenhouse Environment Control based on Computational Experiments. Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, Qingdao, China. https://doi.org/10.1145/3409501.3409518
  • Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., & Wang, F.-Y. (2019). Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. IEEE Transactions on Computational Social Systems, 6(3), 547–553. https://doi.org/10.1109/TCSS.2019.2914499
  • Yu, L., Qin, H., & Xiang, P.-A. (2020). Incentive mechanism of different agricultural models to agricultural technology information management system. Sustainable Computing: Informatics and Systems, 28, Article 100423. https://doi.org/10.1016/j.suscom.2020.100423
  • Yuan, Y., Ni, X., Zeng, S., & Wang, F.-Y. (2016). Blockchain consensus algorithms: The state of the art and future trends. Acta Automatica Sinica, 44(11), 2011–2022. https://doi.org/10.16383/j.aas.2018.c180268
  • Yuan, Y., Zhou, T., Zhou, A., Duan, Y., & Wang, F.-Y. (2017). Blockchain technology: From data intelligence to knowledge automation. IEEE/CAA Journal of Automatica Sinica, 43(9), 1485–1490. https://doi.org/10.16383/j.aas.c180710
  • Zhang, Q., Chu, Y., Xue, Y., Ying, H., Chen, X., Zhao, Y., Ma, W., Ma, L., Zhang, J., Yin, Y., & Cui, Z. (2020). Outlook of China's agriculture transforming from smallholder operation to sustainable production. Global Food Security, 26, Article 100444. https://doi.org/10.1016/j.gfs.2020.100444
  • Zhang, W., Cao, G., Li, X., Zhang, H., Wang, C., Liu, Q., Chen, X., Cui, Z., Shen, J., Jiang, R., Mi, G., Miao, Y., Zhang, F., & Dou, Z. (2016). Closing yield gaps in China by empowering smallholder farmers. Nature, 537(7622), 671–674. https://doi.org/10.1038/nature19368
  • Zhu, J., Wang, F.-Y., Wang, G., Tian, Y.-L., Yuan, Y., Wang, X., Qi, H.-W., & Jia, X.-F. (2021). Federated control: A distributed control approach towards information security and rights protection. Acta Automatica Sinica, 47(8), 1912–1920. https://doi.org/10.16383/j.aas.c210182