1,040
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Farmers’ intention towards intercropping adoption: the role of socioeconomic and behavioural drivers

ORCID Icon, , , &
Article: 2270222 | Received 20 Mar 2023, Accepted 08 Oct 2023, Published online: 07 Nov 2023

References

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
  • Bonke, V., & Musshoff, O. (2020). Understanding German farmer’s intention to adopt mixed cropping using the theory of planned behavior. Agronomy for Sustainable Development, 40(6), 1–14. https://doi.org/10.1007/s13593-020-00653-0
  • Brannan, T., Bickler, C., Hansson, H., Karley, A., Weih, M., & Manevska-Tasevska, G. (2023). Overcoming barriers to crop diversification uptake in Europe: A mini review. Frontiers in Sustainable Food Systems, 7, Article 1107700. https://doi.org/10.3389/fsufs.2023.1107700
  • Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., Hawes, C., Iannetta, P. P., Jones, H. G., & Karley, A. J. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206(1), 107–117. https://doi.org/10.1111/nph.13132
  • Brown, P., Daigneault, A., & Dawson, J. (2019). Age, values, farming objectives, past management decisions, and future intentions in New Zealand agriculture. Journal of Environmental Management, 231, 110–120. https://doi.org/10.1016/j.jenvman.2018.10.018
  • Bybee-Finley, K. A., & Ryan, M. R. (2018). Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture, 8(6), Article 80. https://doi.org/10.3390/agriculture8060080
  • Campos, B. C. (2022). The Rules-Boundaries-Behaviours (RBB) framework for farmers’ adoption decisions of sustainable agricultural practices. Journal of Rural Studies, 92, 164–179. https://doi.org/10.1016/j.jrurstud.2022.03.012
  • Chavas, J. P., & Nauges, C. (2020). Uncertainty, learning, and technology adoption in agriculture. Applied Economic Perspectives and Policy, 42(1), 42–53. https://doi.org/10.1002/aepp.13003
  • Cofré-Bravo, G., Klerkx, L., & Engler, A. (2019). Combinations of bonding, bridging, and linking social capital for farm innovation: How farmers configure different support networks. Journal of Rural Studies, 69, 53–64. https://doi.org/10.1016/j.jrurstud.2019.04.004
  • Daxini, A., Ryan, M., O’Donoghue, C., & Barnes, A. P. (2019). Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy, 85, 428–437. https://doi.org/10.1016/j.landusepol.2019.04.002
  • Dessart, F. J., Barreiro-Hurlé, J., & van Bavel, R. (2019). Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. European Review of Agricultural Economics, 46(3), 417–471. https://doi.org/10.1093/erae/jbz019
  • Ferguson, R., & Hansson, H. (2013). Expand or exit? Strategic decisions in milk production. Livestock Science, 155(2-3), 415–423. https://doi.org/10.1016/j.livsci.2013.05.019
  • Foguesatto, C. R., Borges, J. A. R., & Machado, J. A. D. (2020). A review and some reflections on farmers’ adoption of sustainable agricultural practices worldwide. Science of the Total Environment, 729, Article 138831. https://doi.org/10.1016/j.scitotenv.2020.138831
  • Galinha, I. C., Garcia-Martin, MÁ, Oishi, S., Wirtz, D., & Esteves, F. (2016). Cross-cultural comparison of personality traits, attachment security, and satisfaction with relationships as predictors of subjective well-being in India, Sweden, and the United States. Journal of Cross-Cultural Psychology, 47(8), 1033–1052. https://doi.org/10.1177/0022022116658262
  • Gaskin, J. (2016). MyIndirectEstimand. Gaskination’s statistics. Retrieved 2 January from http://statwiki.kolobkreations.com.
  • Glaze-Corcoran, S., Hashemi, M., Sadeghpour, A., Jahanzad, E., Afshar, R. K., Liu, X., & Herbert, S. J. (2020). Understanding intercropping to improve agricultural resiliency and environmental sustainability. In Donald L. Sparks (Ed.), Advances in agronomy (Vol. 162, pp. 199–256). Elsevier.
  • Gowda, B., Sendhil, R., Adak, T., Raghu, S., Patil, N., Mahendiran, A., Rath, P. C., Kumar, G., & Damalas, C. A. (2021). Determinants of rice farmers’ intention to use pesticides in eastern India: Application of an extended version of the planned behavior theory. Sustainable Production and Consumption, 26, 814–823. https://doi.org/10.1016/j.spc.2020.12.036
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). 2nd ed. Sage.
  • Hansson, H., Manevska-Tasevska, G., & Asmild, M. (2020). Rationalising inefficiency in agricultural production–the case of Swedish dairy agriculture. European Review of Agricultural Economics, 47(1), 1–24.
  • Helsper, E. J., & Reisdorf, B. C. (2017). The emergence of a “digital underclass” in Great Britain and Sweden: Changing reasons for digital exclusion. New Media & Society, 19(8), 1253–1270. https://doi.org/10.1177/1461444816634676
  • Himanen, S. J., Mäkinen, H., Rimhanen, K., & Savikko, R. (2016). Engaging farmers in climate change adaptation planning: Assessing intercropping as a means to support farm adaptive capacity. Agriculture, 6(3), Article 34. https://doi.org/10.3390/agriculture6030034
  • Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Kangogo, D., Dentoni, D., & Bijman, J. (2021). Adoption of climate-smart agriculture among smallholder farmers: Does farmer entrepreneurship matter? Land Use Policy, 109, Article 105666. https://doi.org/10.1016/j.landusepol.2021.105666
  • Kiær, L. P., Weedon, O. D., Bedoussac, L., Bickler, C., Finckh, M. R., Haug, B., Iannetta, P. P., Raaphorst-Travaille, G., Weih, M., & Karley, A. J. (2022). Supply chain perspectives on breeding for legume–cereal intercrops. Frontiers in Plant Science, 13, 459.
  • Kline, R. B. (2016). Principles and practice of structural equation modeling. 4th ed. Guilford Publications.
  • Lei, M., & Lomax, R. G. (2005). The effect of varying degrees of nonnormality in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 12(1), 1–27. https://doi.org/10.1207/s15328007sem1201_1
  • Lemken, D., Spiller, A., & von Meyer-Höfer, M. (2017). The case of legume-cereal crop mixtures in modern agriculture and the transtheoretical model of gradual adoption. Ecological Economics, 137, 20–28. https://doi.org/10.1016/j.ecolecon.2017.02.021
  • Lopez-Ridaura, S., Barba-Escoto, L., Reyna-Ramirez, C. A., Sum, C., Palacios-Rojas, N., & Gerard, B. (2021). Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-82784-2
  • Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., & Palai, J. B. (2021). Intercropping—A low input agricultural strategy for food and environmental security. Agronomy, 11(2), 343. https://doi.org/10.3390/agronomy11020343
  • Maitra, S., Palai, J. B., Manasa, P., & Kumar, D. P. (2019). Potential of intercropping system in sustaining crop productivity. International Journal of Agriculture Environment and Biotechnology, 12(1), 39–45. https://doi.org/10.30954/0974-1712.03.2019.7
  • Mamine, F., & Farès, M. h. (2020). Barriers and levers to developing wheat–pea intercropping in Europe: A review. Sustainability, 12(17), Article 6962. https://doi.org/10.3390/su12176962
  • Moerkerken, A., Blasch, J., Van Beukering, P., & Van Well, E. (2020). A new approach to explain farmers’ adoption of climate change mitigation measures. Climatic Change, 159(1), 141–161. https://doi.org/10.1007/s10584-019-02595-3
  • Nevitt, J., & Hancock, G. R. (2001). Performance of bootstrapping approaches to model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 8(3), 353–377. https://doi.org/10.1207/S15328007SEM0803_2
  • Nnadi, F. N., & Nnadi, C. (2009). Farmers’ sustained adoption decision behaviors of maize/cassava intercrop technology in Imo state: Lessons for extension policy development. World Rural Observations, 1(1), 1–6.
  • Peshin, R., Bano, F., & Kumar, R. (2019). Diffusion and adoption: Factors impacting adoption of sustainable agricultural practices. In R. Peshin & A. K. Dhawan (Eds.), In natural resource management: Ecological perspectives (pp. 235–253). Springer Nature.
  • Pham, Y., Reardon-Smith, K., Mushtaq, S., & Deo, R. C. (2020). Feedback modelling of the impacts of drought: A case study in coffee production systems in Viet Nam. Climate Risk Management, 30, Article 100255. https://doi.org/10.1016/j.crm.2020.100255
  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. https://doi.org/10.3758/BRM.40.3.879
  • Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.
  • Shang, L., Heckelei, T., Gerullis, M. K., Börner, J., & Rasch, S. (2021). Adoption and diffusion of digital farming technologies-integrating farm-level evidence and system interaction. Agricultural Systems, 190, Article 103074. https://doi.org/10.1016/j.agsy.2021.103074
  • Skevas, T., Skevas, I., & Kalaitzandonakes, N. (2022). The role of peer effects on farmers’ decision to adopt unmanned aerial vehicles. Evidence from Missouri. Applied Economics, 54(12), 1366–1376.
  • Sok, J., Borges, J. R., Schmidt, P., & Ajzen, I. (2021). Farmer behaviour as reasoned action: a critical review of research with the theory of planned behaviour. Journal of Agricultural Economics, 72(2), 388–412. https://doi.org/10.1111/1477-9552.12408
  • Swedish Board of Agriculture. (2021). Agricultural static compilation 2021.
  • Tensi, A. F., Ang, F., & van der Fels-Klerx, H. (2022). Behavioural drivers and barriers for adopting microbial applications in arable farms: Evidence from the Netherlands and Germany. Technological Forecasting and Social Change, 182, Article 121825. https://doi.org/10.1016/j.techfore.2022.121825
  • Thompson, B., Barnes, A. P., & Toma, L. (2022). Increasing the adoption intensity of sustainable agricultural practices in Europe: Farm and practice level insights. Journal of Environmental Management, 320, Article 115663. https://doi.org/10.1016/j.jenvman.2022.115663
  • Ullman, J. B., & Bentler, P. M. (2012). Structural equation modelling. In Irving B. Weiner (Ed.), In handbook of Psychology (2nd Edition). John Wiley & Sons.
  • Wang, T., Jin, H., Fan, Y., Obembe, O., & Li, D. (2021). Farmers’ adoption and perceived benefits of diversified crop rotations in the margins of US Corn Belt. Journal of Environmental Management, 293, Article 112903. https://doi.org/10.1016/j.jenvman.2021.112903
  • Wang, Z.-G., Jin, X., Bao, X.-G., Li, X.-F., Zhao, J.-H., Sun, J.-H., Christie, P., & Li, L. (2014). Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PloS One, 9(12), Article e113984. https://doi.org/10.1371/journal.pone.0113984
  • Weih, M., Karley, A. J., Newton, A. C., Kiær, L. P., Scherber, C., Rubiales, D., Adam, E., Ajal, J., Brandmeier, J., & Pappagallo, S. (2021). Grain yield stability of cereal-legume intercrops is greater than sole crops in more productive conditions. Agriculture, 11(3), Article 255. doi:10.3390/agriculture11030255