573
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sustainable intensification technologies and farm performance: evidence from smallholder sorghum farmers in Nigeria

ORCID Icon, , , &
Article: 2270233 | Received 08 Feb 2023, Accepted 08 Oct 2023, Published online: 30 Oct 2023

References

  • Abdoulaye, T., Wossen, T., & Awotide, B. (2018). Impacts of improved maize varieties in Nigeria: Ex-post assessment of productivity and welfare outcomes. Food Security, 10(2), 369–379. https://doi.org/10.1007/s12571-018-0772-9
  • Abdulai, A., & Huffman, W. (2014). The adoption and impact of soil and water conservation technology: An endogenous switching regression application. Land Economics, 90(1), 26–43. https://doi.org/10.3368/le.90.1.26
  • Ajeigbe, H. A., Akinseye, F. M., Ayuba, K., & Jonah, J. (2018). Productivity and water use efficiency of Sorghum [Sorghum bicolor (L.) Moench] grown under different nitrogen applications in Sudan Savanna Zone. International Journal of Agronomy, 7676058.
  • Ajeigbe, H. A., Akinseye, F. M., Kunihya, A., Abdullahi, A. I., & Kamara, A. Y. (2019). Response of pearl millet (Pennisetum glaucum L.) to plant population in the semi-arid environments of Nigeria. Net Journal of Agricultural Science, 7(1), 13–22. https://doi.org/10.30918/njas.71.18.036
  • Akinseye, F. M., Ajeigbe, H. A., Traore, P. C., Agele, S. O., Zemadim, B., & Whitbread, A. (2020). Improving sorghum productivity under changing climatic conditions: A modelling approach. Field Crops Research, 246, 107685. https://doi.org/10.1016/j.fcr.2019.107685
  • Alene, A. D., & Manyong, V. M. (2006). Farmer-to-farmer technology diffusion and yield variation among adopters: The case of improved cowpea in northern Nigeria. Agricultural Economics, 35(2), 203–211. https://doi.org/10.1111/j.1574-0862.2006.00153.x
  • Amadu, F. O., McNamara, P. E., & Miller, D. C. (2020). Yield effects of climate-smart agriculture aid investment in southern Malawi. Food Policy, 92, 101869. https://doi.org/10.1016/j.foodpol.2020.101869
  • Arouna, A., Lokossou, J. C., Wopereis, M. C. S., Bruce-Oliver, S., & Roy-Macauley, H. (2017). Contribution of improved rice varieties to poverty reduction and food security in sub-saharan Africa. Global Food Security, 14, 54–60. https://doi.org/10.1016/j.gfs.2017.03.001
  • Awotide, B. A., Alene, A. D., Abdoulaye, T., & Manyong, V. M. (2015). Impact of agricultural technology adoption on asset ownership: The case of improved cassava varieties in Nigeria. Food Security, 7(6), 1239–1258. https://doi.org/10.1007/s12571-015-0500-7
  • Belay, F. (2018). Breeding sorghum for striga resistance: A review. Journal of Natural Sciences Research, 8(5), 1–8.
  • Bello, L. O., Baiyegunhi, L. J. S., & Danso-Abbeam, G. (2020). Productivity impact of improved rice varieties’ adoption: Case of smallholder rice farmers in Nigeria. Economics of Innovation & New Technology, 30(7), 750–766. https://doi.org/10.1080/10438599.2020.1776488
  • Binswanger-Mkhize, H. P., & Savastano, S. (2017). Agricultural intensification: The status in six African countries. Food Policy, 67, 26–40. https://doi.org/10.1016/j.foodpol.2016.09.021
  • Burke, W. J., Snapp, S. S., & Jayne, T. S. (2022). Sustainable intensification in jeopardy: Transdisciplinary evidence from Malawi. Science of The Total Environment, 155758. https://doi.org/10.1016/j.scitotenv.2022.155758
  • Chandio, A. A., & Yuansheng, J. (2018). Determinants of adoption of improved rice varieties in northern sindh, Pakistan. Rice Science, 25(2), 103–110. https://doi.org/10.1016/j.rsci.2017.10.003
  • Conley, T. G., & Udry, C. R. (2010). Learning about a new technology: Pineapple in Ghana. American Economic Review, 100(1), 35–69. https://doi.org/10.1257/aer.100.1.35
  • de Janvry, A., Fafchamps, M., & Sadoulet, E. (1991). Peasant household behavior with missing markets: Some paradoxes explained. The Economic Journal, 101(409), 1400–1417. https://doi.org/10.2307/2234892
  • Di Falco, S. D., Veronesi, M., & Yesuf, M. (2011). Does adaptation to climate change provide food security ? A micro-perspective from Ethiopia. Center for Climate Change Economics and Policy, Grantham Research Institute on Climate Change and The Environment, 22, 1–33.
  • Droppelmann, K. J., Snapp, S. S., & Waddington, S. R. (2017). Sustainable intensification options for smallholder maize-based farming systems in sub-saharan Africa. Food Security, 9(1), 133–150. https://doi.org/10.1007/s12571-016-0636-0
  • Evenson, R., & Gollin, D. (2003). Assessing the impact of the green revolution. Science, 300(560), 758–765. https://doi.org/10.1126/science.1078710
  • Fischer, E., & Qaim, M. (2012). Gender, agricultural commercialization, and collective action in Kenya. Food Security, 4(3), 441–453. https://doi.org/10.1007/s12571-012-0199-7
  • Foster, A. D., & Rosenzweig, M. (1995). Learning by doing and learning from others: Human capital and technical change in agriculture. Journal of Political Economy, 103(6), 1176–1209. https://doi.org/10.1086/601447
  • Gollin, D., Hansen, C. W., & Wingender, A. M. (2021). Two blades of grass: The impact of the green revolution. Journal of Political Economy, 129(8), 2344–2384. https://doi.org/10.1086/714444
  • Jayne, T. S., Snapp, S., Place, F., & Sitko, N. (2019). Sustainable agricultural intensification in an era of rural transformation in Africa. Global Food Security, 20(January), 105–113. https://doi.org/10.1016/j.gfs.2019.01.008
  • Jelliffe, J. L., Bravo-Ureta, B. E., Deom, C. M., & Okello, D. K. (2018). Adoption of high-yielding groundnut varieties: The sustainability of a farmer-led multiplication-dissemination program in eastern Uganda. Sustainability, 10(5), 1597. https://doi.org/10.3390/su10051597
  • Jones-Garcia, E., & Krishna, V. V. (2021). Farmer adoption of sustainable intensification technologies in the maize systems of the global south. A review. Agronomy for Sustainable Development, 41(1), 8. https://doi.org/10.1007/s13593-020-00658-9
  • Kabir, M. H., Rainis, R., & Azad, M. J. (2017). Are spatial factors important in the adoption of eco-friendly agricultural technologies? Evidence on integrated pest management (IPM). Journal of Geographic Information System, 9(2), 98–113. https://doi.org/10.4236/jgis.2017.92007
  • Kabunga, N. S., Dubois, T., & Qaim, M. (2012). Yield effects of tissue culture bananas in Kenya: Accounting for selection bias and the role of complementary inputs. Journal of Agricultural Economics, 63(2), 444–464. https://doi.org/10.1111/j.1477-9552.2012.00337.x
  • Kante, M., Rattunde, F., Nébié, B., Sissoko, I., Diallo, B., Diallo, A., Touré, A., Weltzien, E., Haussmann, B. I. G., & Leiser, W. L. (2019). Sorghum hybrids for low-input farming systems in West Africa: Quantitative genetic parameters to guide hybrid breeding. Crop Science, 59(6), 2544–2561. https://doi.org/10.2135/cropsci2019.03.0172
  • Kassie, M., Marenya, P., Tessema, Y., Jaleta, M., Zeng, D., Erenstein, O., & Rahut, D. (2018). Measuring farm and market level economic impacts of improved maize production technologies in Ethiopia: Evidence from panel data. Journal of Agricultural Economics, 49(5), 76–95. https://doi.org/10.1111/1477-9552.12221
  • Kassie, M., Shiferaw, B., & Muricho, G. (2010). Adoption and impact of improved groundnut varieties on rural poverty: Evidence from rural Uganda. Environment for Development Discussion Paper - Resources for the Future (RFF), 10–11, 30. http://www.rff.org/RFF/Documents/EfD-DP-10-11.pdf.
  • Kassie & Muricho (2018). The nutrition impacts of women’s empowerment in Kenyan agriculture: Application of the multinomial endogenous switching treatment regression. 2018 conference, July 28-August 2, 2018, Vancouver, British Columbia.
  • Khonje, M. G., Manda, J., Mkandawire, P., Tufa, A. H., & Alene, A. D. (2018). Adoption and welfare impacts of multiple agricultural technologies: Evidence from eastern Zambia. Agricultural Economics (United Kingdom), 49(5), 599–609. https://doi.org/10.1111/agec.12445
  • Kotu, B. H., Alene, A., Manyong, V., Hoeschle-Zeledon, I., & Larbi, A. (2017). Adoption and impacts of sustainable intensification practices in Ghana. International Journal of Agricultural Sustainability, 15(5), 539–554. https://doi.org/10.1080/14735903.2017.1369619
  • Kubitza, C., & Krishna, V. V. (2020). Instrumental variables and the claim of causality: Evidence from impact studies in maize systems. Global Food Security, 26, 100383. https://doi.org/10.1016/j.gfs.2020.100383
  • Ligon, E., & Sadoulet, E. (2018). Estimating the relative benefits of agricultural growth on the distribution of expenditures. World Development, 109, 417–428. https://doi.org/10.1016/j.worlddev.2016.12.007
  • Lokshin, M., & Sajaia, Z. (2004). Maximum likelihood estimation of endogenous switching regression models. The Stata Journal, 4(3), 282–289. https://doi.org/10.1177/1536867X0400400306
  • Magruder, J. (2018). An assessment of experimental evidence on agricultural technology adoption in developing countries. Annual Review of Economics, 10(1), 299–316. https://doi.org/10.1146/annurev-resource-100517-023202
  • Manda, J., Alene, A. D., Tufa, A. H., Feleke, S., Abdoulaye, T., Omoigui, L. O., & Manyong, V. (2020). Market participation, household food security, and income: The case of cowpea producers in northern Nigeria. Food and Energy Security, 9(3), 1–17. https://doi.org/10.1002/fes3.211
  • Manda, J., Azzarri, C., Feleke, S., Kotu, B., Claessens, L., & Bekunda, M. (2021). Welfare impacts of smallholder farmers’ participation in multiple output markets: Empirical evidence from Tanzania. PLoS ONE, 16(5 May), 1–20. https://doi.org/10.1371/journal.pone.0250848
  • Manda, J., Gardebroek, C., Kuntashula, E., & Alene, A. D. (2018). Impact of improved maize varieties on food security in eastern Zambia: A doubly robust analysis. Review of Development Economics, 1–20. https://doi.org/10.1111/rode.12516
  • Marenya, P. P., Gebremariam, G., Jaleta, M., & Rahut, D. B. (2020). Sustainable intensification among smallholder maize farmers in Ethiopia: Adoption and impacts under rainfall and unobserved heterogeneity. Food Policy, 95(September 2019), 101941. https://doi.org/10.1016/j.foodpol.2020.101941
  • Mellon Bedi, S., Azzarri, C., Hundie Kotu, B., Kornher, L., & von Braun, J. (2022). Scaling-up agricultural technologies: Who should be targeted? European Review of Agricultural Economics, 49(4), 857–875. https://doi.org/10.1093/erae/jbab054
  • Mengistu, G., Shimelis, H., Laing, M., & Lule, D. (2019). Assessment of farmers’ perceptions of production constraints, and their trait preferences of sorghum in western Ethiopia: Implications for anthracnose resistance breeding. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(3), 241–249.
  • Meshesha, A. T., Birhanu, B. S., & Bezabih Ayele, M. (2022). Effects of perceptions on adoption of climate-smart agriculture innovations: Empirical evidence from the upper Blue Nile Highlands of Ethiopia. International Journal of Climate Change Strategies and Management, 14(3), 293–311. https://doi.org/10.1108/IJCCSM-04-2021-0035
  • Michler, J. D., Tjernström, E., Verkaart, S., & Mausch, K. (2019). Money matters: The role of yields and profits in agricultural technology adoption. American Journal of Agricultural Economics, 101(3), 710–731. https://doi.org/10.1093/ajae/aay050
  • Mottaleb, K. A. (2018). Perception and adoption of a new agricultural technology: Evidence from a developing country. Technology in Society, 55, 126–135. https://doi.org/10.1016/j.techsoc.2018.07.007
  • Mrema, E., Shimelis, H., Laing, M., & Bucheyeki, T. (2017). Farmers’ perceptions of sorghum production constraints and striga control practices in semi-arid areas of Tanzania. International Journal of Pest Management, 63(2), 146–156. https://doi.org/10.1080/09670874.2016.1238115
  • Musara, J. P., & Musemwa, L. (2020). Impacts of improved sorghum varieties intensification on household welfare in the mid-Zambezi valley of Zimbabwe. Agrekon, 59(2), 254–267. https://doi.org/10.1080/03031853.2020.1721306
  • Mutenje, M., Kankwamba, H., Mangisonib, J., & Kassie, M. (2016). Agricultural innovations and food security in Malawi: Gender dynamics, institutions and market implications. Technological Forecasting and Social Change, 103, 240–248. https://doi.org/10.1016/j.techfore.2015.10.004
  • Ndjeunga, J., Mausch, K., & Simtowe, F. (2015). Assessing the effectiveness of agricultural R &D for groundnut, pearl millet, pigeon pea, and sorghum in west and Central Africa and east and Southern Africa. In T. S. Walker, & J. Alwang (Eds.), Crop improvement, adoption, and impact of improved varieties in food crops in Sub-saharan Africa (pp. 123–147). CGIAR-CABI.
  • Ojo, T. O., & Baiyegunhi, L. J. S. (2020). Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy, 95, 103946. https://doi.org/10.1016/j.landusepol.2019.04.007
  • Olagunju, K. O., Ogunniyi, A. I., Awotide, B. A., Adenuga, A. H., & Ashagidigbi, W. M. (2020). Evaluating the distributional impacts of drought-tolerant maize varieties on productivity and welfare outcomes: An instrumental variable quantile treatment effects approach. Climate and Development, 12(10), 865–875. https://doi.org/10.1080/17565529.2019.1701401
  • Otsuka, K., & Muraoka, R. (2017). A green revolution for Sub-saharan Africa: Past failures and future prospects. Journal of African Economies, 26(suppl_1), i73–i98. https://doi.org/10.1093/jae/ejx010
  • Oyinbo, O., Chamberlin, J., Vanlauwe, B., Vranken, L., Kamara, Y. A., Craufurd, P., & Maertens, M. (2019). Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria. Agricultural Systems, 173(January), 12–26. https://doi.org/10.1016/j.agsy.2019.02.003
  • Pingali, P. L. (2012). Green revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 12302–12308. https://doi.org/10.1073/pnas.0912953109
  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596. https://doi.org/10.1093/aob/mcu205
  • Rahman, S., & Chima, C. D. (2018). Determinants of pesticide use in food crop production in southeastern Nigeria. Agriculture, 8(3), 35. https://doi.org/10.3390/agriculture8030035
  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4–17. https://doi.org/10.1007/s13280-016-0793-6
  • Ruzzante, S., Labarta, R., & Bilton, A. (2021). Adoption of agricultural technology in the developing world: A meta-analysis of the empirical literature. World Development, 146, 105599. https://doi.org/10.1016/j.worlddev.2021.105599
  • Sebnie, W., Mengesha, M., Girmay, G., Feyisa, T., Asgedom, B., Beza, G., & Dejene, D. (2020). Evaluation of micro-dosing fertilizer application on sorghum (sorghum bicholor L) production at Wag-lasta areas of amhara region, Ethiopia. Scientific Reports, 10(1), 6–11. https://doi.org/10.1038/s41598-020-63851-6
  • Shiferaw, B., Kassie, M., Jaleta, M., & Yirga, C. (2014). Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy, 44, 272–284. https://doi.org/10.1016/j.foodpol.2013.09.012
  • Smale, M., Assima, A., Kergna, A., Thériault, V., & Weltzien, E. (2018). Farm family effects of adopting improved and hybrid sorghum seed in the Sudan savanna of West Africa. Food Policy, 74(September 2017), 162–171. https://doi.org/10.1016/j.foodpol.2018.01.001
  • Spiegel, A., Britz, W., & Finger, R. (2021). Risk, risk aversion, and agricultural technology adoption─ A novel valuation method based on real options and inverse stochastic dominance. Q Open, 1(2), qoab016. https://doi.org/10.1093/qopen/qoab016
  • Suri, T., & Udry, C. (2022). Agricultural technology in early. Journal of Economic Perspectives, 36(1), 33–56. https://doi.org/10.1257/jep.36.1.33
  • Takahashi, K., Muraoka, R., & Otsuka, K. (2020). Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agricultural Economics, 51(1), 31–45. https://doi.org/10.1111/agec.12539
  • Traore, K., Sidibe, D. K., Coulibaly, H., & Bayala, Y. (2017). Optimizing yield of improved varieties of millet and sorghum under highly variable rainfall conditions using contour ridges in cinzana. Mali. Agriculture & Food Security, 6(11), 1–13.
  • Tufa, A. H., Alene, A. D., Manda, J., Akinwale, M. G., Chikoye, D., Feleke, S., Wossen, T., & Manyong, V. (2019). The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi. World Development, 124, 104631. https://doi.org/10.1016/j.worlddev.2019.104631
  • Vanlauwe, B., & Dobermann, A. (2020). Sustainable intensification of agriculture in sub-saharan Africa: First things first. Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2020351
  • Weltzien, E., Rattunde, H. F. W., van Mourik, T. A., & Ajeigbe, H. (2018). Sorghum cultivation and improvement in west and Central Africa. In W. Rooney (Ed.), Achieving sustainable cultivation of sorghum volume 2: Sorghum utilization around the world (pp. 217–240). Burleigh Dodds Science Publishing.
  • Woolridge, J. (2010). Econometric analysis of cross section and panel data (2nd edtion). MIT Press.
  • Wossen, T., Abdoulaye, T., Alene, A., Feleke, S., Menkir, A., & Manyong, V. (2017). Measuring the impacts of adaptation strategies to drought stress: The case of drought tolerant maize varieties. Journal of Environmental Management, 203, 106–113. https://doi.org/10.1016/j.jenvman.2017.06.058
  • Wossen, T., Gatiso, T. T., & Kassie, M. (2019). Estimating returns to fertilizer adoption with unobserved heterogeneity: Evidence from Ethiopia. Food and Energy Security, 8(2), 1–9. https://doi.org/10.1002/fes3.156
  • Yahaya, M. A., & Shimelis, H. (2021). Drought stress in sorghum: Mitigation strategies, breeding methods and technologies—A review. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.12573