347
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of kicking action in front crawl: the inter-relationships between swimming velocity, hand propulsive force and trunk inclination

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 15 Jun 2023, Accepted 02 Jan 2024, Published online: 22 Jan 2024

References

  • Bucher, W. (1975). The influence of the leg kick and the arm stroke on the total speed during the crawl stroke. In Swimming II: Proceedings of the Second International Symposium on Biomechanics in Swimming, Brussels, Belgium, 180–187. https://www.iat.uni-leipzig.de/datenbanken/iks/open_archive/bms/2_180-187_Bucher.pdf
  • Chollet, D., Chalies, S., & Chatard, J. C. (2000). A new index of coordination for the crawl: Description and usefulness. International Journal of Sports Medicine, 21(1), 54–59. https://doi.org/10.1055/s-2000-8855
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
  • Cohen, R. C. Z., Cleary, P. W., Mason, B. R., & Pease, D. L. (2018). Forces during front crawl swimming at different stroke rates. Sports Engineering, 21(1), 63–73. https://doi.org/10.1007/s12283-017-0246-x
  • Deschodt, J. V., Arsac, L. M., & Rouard, A. H. (1999). Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. European Journal of Applied Physiology and Occupational Physiology, 80(3), 192–199. https://doi.org/10.1007/s004210050581
  • Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538. https://doi.org/10.1037/a0015808
  • Formosa, D. P., Toussaint, H. M., Mason, B. R., & Burkett, B. (2012). Comparative analysis of active drag using the MAD system and an assisted towing method in front crawl swimming. Journal of Applied Biomechanics, 28(6), 746–750. https://doi.org/10.1123/jab.28.6.746
  • Gatta, G., Cortesi, M., & DiMichele, R. (2012). Power production of the lower limbs in flutter-kick swimming. Sports Biomechanics, 11(4), 480–491. https://doi.org/10.1080/14763141.2012.670663
  • Gatta, G., Cortesi, M., Fantozzi, S., & Zamparo, P. (2015). Planimetric frontal area in the four swimming strokes: Implications for drag, energetics and speed. Human Movement Science, 39, 41–54. https://doi.org/10.1016/j.humov.2014.06.010
  • Gourgoulis, V., Boli, A., Aggeloussis, N., Toubekis, A., Antoniou, P., Kasimatis, P., Vezos, N., Michalopoulou, M., Kambas, A., & Mavromatis, G. (2014). The effect of leg kick on sprint front crawl swimming. Journal of Sports Sciences, 32(3), 278–289. https://doi.org/10.1080/02640414.2013.823224
  • Guignard, B., Chollet, D., Vedova, D. D., Rouard, A., Bonifazi, M., Hart, J., & Seifert, L. (2019). Upper to lower limb coordination dynamics in swimming depending on swimming speed and aquatic environment manipulations. Motor Control, 23(3), 418–442. https://doi.org/10.1123/mc.2018-0026
  • Hollander, A. P., de Groot, G., & van Ingen Schenau, G. J. (1988). Contribution of the legs to propulsion in front crawl swimming. Swimming Science, 39–43. https://www.iat.uni-leipzig.de/datenbanken/iks/open_archive/bms/5_39-43_Hollander.pdf
  • Hollander, A. P., De Groot, G., Van Ingen Schenau, G. J., Toussaint, H. M., De Best, H., Peeters, W., Meulemans, A., & Schreurs, A. W. (1986). Measurement of active drag during crawl arm stroke swimming. Journal of Sports Sciences, 4(1), 21–30. https://doi.org/10.1080/02640418608732094
  • Hopkins, W. (2002). A new view of statistics. Internet Society for Sport Science. http://www.sportsci.org/resource/stats/effectmag.html
  • Kadi, T., Wada, T., Narita, K., Tsunokawa, T., Mankyu, H., Tamaki, H., & Ogita, F. (2022). Novel method for estimating propulsive force generated by swimmers’ hands using inertial measurement units and pressure sensors. Sensors, 22(17), 6695. https://doi.org/10.3390/s22176695
  • Koga, D., Gonjo, T., Kawai, E., Tsunokawa, T., Sakai, S., Sengoku, Y., Homma, M., & Takagi, H. (2020). Effects of exceeding stroke frequency of maximal effort on hand kinematics and hand propulsive force in front crawl. Sports Biomechanics, 1–13. https://doi.org/10.1080/14763141.2020.1814852
  • Kudo, S., Yanai, T., Wilson, B., Takagi, H., & Vennell, R. (2008). Prediction of fluid forces acting on a hand model in unsteady flow conditions. Journal of Biomechanics, 41(5), 1131–1136. https://doi.org/10.1016/j.jbiomech.2007.12.007
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
  • Morais, J. E., Barbosa, T. M., Nevill, A. M., Cobley, S., & Marinho, D. A. (2022). Understanding the role of propulsion in the prediction of front-crawl swimming velocity and in the relationship between stroke frequency and stroke length. Frontiers in Physiology, 13, 876838. https://doi.org/10.3389/fphys.2022.876838
  • Morais, J. E., Sanders, R. H., Papic, C., Barbosa, T. M., & Marinho, D. A. (2020). The influence of the frontal surface area and swim velocity variation in front crawl active drag. Medicine and Science in Sports and Exercise, 52(11), 2357–2364. https://doi.org/10.1249/MSS.0000000000002400
  • Morris, K. S., Osborne, M. A., Shephard, M. E., Skinner, T. L., & Jenkins, D. G. (2016). Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates. European Journal of Applied Physiology, 116(5), 1075–1085. https://doi.org/10.1007/s00421-016-3372-4
  • Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134), 20170213. https://doi.org/10.1098/rsif.2017.0213
  • Narita, K., Nakashima, M., & Takagi, H. (2017). Developing a methodology for estimating the drag in front-crawl swimming at various velocities. Journal of Biomechanics, 54, 123–128. https://doi.org/10.1016/j.jbiomech.2017.01.037
  • Pierce, C. A., Block, R. A., & Aguinis, H. (2004). Cautionary note on reporting eta-squared values from multifactor ANOVA designs. Educational and Psychological Measurement, 64(6), 916–924. https://doi.org/10.1177/0013164404264848
  • Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437–448. https://doi.org/10.3102/10769986031004437
  • Ruiz-Navarro, J. J., López-Belmonte, Ó., Gay, A., Cuenca-Fernández, F., & Arellano, R. (2022). A new model of performance classification to standardize the research results in swimming. European Journal of Sport Science, 23(4), 1–11. https://doi.org/10.1080/17461391.2022.2046174
  • Sanders, R. H., & Psycharakis, S. G. (2009). Rolling rhythms in front crawl swimming with six-beat kick. Journal of Biomechanics, 42(3), 273–279. https://doi.org/10.1016/j.jbiomech.2008.10.037
  • Seifert, L., Chollet, D., & Bardy, B. G. (2004). Effect of swimming velocity on arm coordination in the front crawl: A dynamic analysis. Journal of Sports Sciences, 22(7), 651–660. https://doi.org/10.1080/02640410310001655787
  • Silva, A. F., Seifert, L., Fernandes, R. J., Vilas Boas, J. P., & Figueiredo, P. (2022). Front crawl swimming coordination: A systematic review. Sports Biomechanics, 1–20. https://doi.org/10.1080/14763141.2022.2125428
  • Silveira, R. P., de Souza Castro, F. A., Figueiredo, P., Vilas-Boas, J. P., & Zamparo, P. (2017). The effects of leg kick on swimming speed and arm-stroke efficiency in the front crawl. International Journal of Sports Physiology and Performance, 12(6), 728–735. https://doi.org/10.1123/ijspp.2016-0232
  • Takagi, H., & Wilson, B. (1999). Calculating hydrodynamic force by using pressure differences in swimming. In Biomechanics and medicine in swimming VIII. University of Jyväskylä. https://www.iat.uni-leipzig.de/datenbanken/iks/open_archive/bms/8_101-106_Takagi.pdf
  • Toussaint, H., & Truijens, M. (2005). Biomechanical aspects of peak performance in human swimming. Animal Biology, 55(1), 17–40. https://doi.org/10.1163/1570756053276907
  • Toussaint, H. M., & Beek, P. J. (1992). Biomechanics of competitive front crawl swimming. Sports Medicine, 13(1), 8–24. https://doi.org/10.2165/00007256-199213010-00002
  • Toussaint, H. M., de Groot, G., Savelberg, H. H. C. M., Vervoorn, K., Hollander, A. P., & van Ingen Schenau, G. J. (1988). Active drag related to velocity in male and female swimmers. Journal of Biomechanics, 21(5), 435–438. https://doi.org/10.1016/0021-9290(88)90149-2
  • Toussaint, H. M., Roos, P. E., & Kolmogorov, S. (2004). The determination of drag in front crawl swimming. Journal of Biomechanics, 37(11), 1655–1663. https://doi.org/10.1016/j.jbiomech.2004.02.020
  • Tsunokawa, T., Mankyu, H., Takagi, H., & Ogita, F. (2019). The effect of using paddles on hand propulsive forces and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities. Human Movement Science, 64, 378–388. https://doi.org/10.1016/j.humov.2019.03.007
  • Tsunokawa, T., Tsuno, T., Mankyu, H., Takagi, H., & Ogita, F. (2018). The effect of paddles on pressure and force generation at the hand during front crawl. Human Movement Science, 57, 409–416. https://doi.org/10.1016/j.humov.2017.10.002
  • Washino, S., Murai, A., Mankyu, H., Ogita, F., Kanehisa, H., & Yoshitake, Y. (2021). Lower lung-volume level induces lower vertical center of mass position and alters swimming kinematics during front-crawl swimming. Journal of Biomechanics, 121, 110428. https://doi.org/10.1016/j.jbiomech.2021.110428
  • Washino, S., Murai, A., Mankyu, H., Ogita, F., Kanehisa, H., & Yoshitake, Y. (2022). Projected frontal area and its components during front crawl depend on lung volume. Scandinavian Journal of Medicine and Science in Sports, 32(12), 1724–1737. https://doi.org/10.1111/sms.14231
  • Watkins, J., & Gordon, A. T. (1983). The effects of leg action on performance in the sprint front crawl stroke. In Biomechanics and medicine in swimming. Human Kinetics. https://www.iat.uni-leipzig.de/datenbanken/iks/open_archive/bms/4_310-314_Watkins.pdf
  • Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). John Wiley and Sons. https://doi.org/10.1002/9780470549148
  • Yanai, T. (2001). Rotational effect of buoyancy in frontcrawl: Does it really cause the legs to sink? Journal of Biomechanics, 34(2), 235–243. https://doi.org/10.1016/S0021-9290(00)00186-X
  • Yanai, T., & Wilson, B. D. (2008). How does buoyancy influence front-crawl performance? Exploring the assumptions. Sports Technology, 1(2–3), 89–99. https://doi.org/10.1080/19346182.2008.9648458
  • Zamparo, P., Gatta, G., Pendergast, D., & Capelli, C. (2009). Active and passive drag: The role of trunk incline. European Journal of Applied Physiology, 106(2), 195–205. https://doi.org/10.1007/s00421-009-1007-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.