54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

First Byzantinia from Afro-Arabia and the evolutionary history of extinct cricetodontine rodents investigated through Bayesian phylogenetic inference

ORCID Icon, ORCID Icon, , , &
Article: 2329078 | Received 28 Jul 2023, Accepted 23 Feb 2024, Published online: 25 Apr 2024

References

  • Barido-Sottani, J., Aguirre-Fernández, G., Hopkins, M. J., Stadler, T., & Warnock, R. (2019). Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proceedings of the Royal Society B, 286, 20190685. https://doi.org/10.1098/rspb.2019.0685
  • Bi, S. (2005). Evolution, systematics and functional anatomy of Cricetodontini (Cricetidae, Rodentia, Mammalia) from the northern Junggar Basin, northwestern China [D. Phil. thesis]. Howard University.
  • Black, C. C., Krishtalka, L., & Solounias, N., (1980). Mammalian fossils of Samos and Pikermi, Part 1. The Turolian rodents and insectivores of Samos. Annals of Carnegie Museum, 49, 359–378. https://doi.org/10.5962/p.214481
  • Bonis, L. de, Grohé, C., Chaimanee, Y., Jaeger, J.-J., Yamee, C., & Rugbumrung, M. (2021). New fossil Carnivora from Thailand: Transcontinental paleobiostratigraphic correlations and paleobiogeographical implications. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 299, 319–332. https://doi.org/10.1127/njgpa/2021/0972
  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  • Bowdich, T. E. (1821). An analysis of the natural classifications of Mammalia, for the use of students and travellers Paris: J. Smith.
  • Çinar Durgut, N., & Ünay, E. (2016). Cricetodontini from the Early Miocene of Anatolia. Bulletin of the Mineral Research and Exploration, 152, 85–119. https://doi.org/10.19111/bmre.35767
  • Daxner-Höck, G. (2003). Cricetodon meini and other rodents from Mühlbach and Grund, Lower Austria (Middle Miocene, late MN5). Annalen des Naturhistorischen Museums in Wien Serie A, 104, 267–291.
  • de Bruijn, H. (1976). Vallesian and Turolian rodents from Biotia, Attica and Rhodes (Greece). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, 79, 361–384.
  • de Bruijn, H., Fahlbusch, V., Saraç, G., & Ünay, E. (1993). Early Miocene rodent faunas from the eastern Mediterranean areas. III: The genera Deperetomys and Cricetodon with a discussion of the evolutionary history of the Cricetodontini. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, 96, 151–216.
  • de Bruijn, H., & Ünay, E. (1996). On the evolutionary history of the Cricetodontini from Europe and Asia Minor and its bearing on the reconstruction of migrations and the continental biotope during the Neogene. In R. L. Bernor, V. Fahlbusch & H. W. Mittmann (Eds.), The evolution of Western Eurasian Neogene mammal faunas (pp. 227–234). New York: Columbia University Press.
  • Freudenthal, M. (1970). A new Ruscinomys (Mammalia, Rodentia) from the late Tertiary (Pikermian) of Samos, Greece. American Museum Novitates, 2402, 1–10.
  • Georgalis, G. L., Villa, A., Vlachos, E., & Delfino, M. (2016). Fossil amphibians and reptiles from Plakias, Crete: A glimpse into the earliest late Miocene herpetofaunas of southeastern Europe. Geobios, 49, 433–444.
  • Grandjean, E. (2004). Le genre Byzantinia (Rodentia, Cricetidae) du Miocène d’Anatolie centrale. Systématique et phylogénie [MSc thesis]. Université Pierre et Marie Curie.
  • Hír, J. (2017). A detailed description of Cricetodon hungaricus (Kordos, 1986) (Rodentia, Mammalia) from Hasznos (N. Hungary, Nógrád County). Fossil Imprint, 73, 155–171. https://doi.org/10.2478/if-2017-0008
  • Hír, J., Vlad, C., & Prieto, J. (2019). Two new early Sarmatian s. str. (latest middle Miocene) rodent faunas from the Carpathian Basin. Palaeobiodiversity and Palaeoenvironments, 100, 849–902. https://doi.org/10.1007/s12549-019-00399-y
  • Illiger, C. (1811). Prodromus systematis mammalium et avium Berlin: C. Salfeld.
  • Joniak, P., & de Bruijn, H. (2014). Rodents from the Upper Miocene Tug̅lu Formation (Çankiri Basin, Central Anatolia, Turkey). Paläontologische Zeitschrift, 89, 1039–1056. https://doi.org/10.1007/s12542-015-0257-5
  • Joniak, P., Peláez-Campomanes, P., van den Hoek Ostende, L. W., & Rojay, B. (2017). Early Miocene rodents of Gökler (Kazan Basin, Central Anatolia, Turkey). Historical Biology, 31, 982–1007. https://doi.org/10.1080/08912963.2017.1414211
  • Klein Hofmeijer, G., & de Bruijn, H. (1988). The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece): The Cricetidae. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 91, 185–204.
  • Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925. https://doi.org/10.1080/106351501753462876
  • López-Antoñanzas, R., Knoll, F., Maksoud, S., & Azar, D. (2015). First Miocene rodent from Lebanon provides the 'missing link' between Asian and African gundis (Rodentia: Ctenodactylidae). Scientific Reports, 5, 12871. https://doi.org/10.1038/srep12871
  • López-Antoñanzas, R., & Peláez-Campomanes, P. (2022). Bayesian morphological clock versus parsimony: An insight into the relationships and dispersal events of postvacuum Cricetidae (Rodentia, Mammalia). Systematic Biology, 71, 512–525.
  • López-Antoñanzas, R., Peláez-Campomanes, P., Álvarez-Sierra, M. A., & García-Paredes, I. (2010). New species of Hispanomys (Rodentia, Cricetodontinae) from the Upper Miocene of Batallones (Madrid, Spain). Zoological Journal of the Linnean Society, 160, 725–747. https://doi.org/10.1111/j.1096-3642.2010.00618.x
  • López-Antoñanzas, R., Renaud, S., Peláez-Campomanes, P., Azar, D., Kachacha, G., & Knoll, F. (2019). First levantine fossil murines shed new light on the first dispersal of mice. Scientific Reports, 9, 11874. https://doi.org/10.1038/s41598-019-47894-y
  • Lymberakis, P., & Poulakakis, N. (2010). Three continents claiming an archipelago: The evolution of the Aegean`s herpetofaunal diversity. Diversity, 2, 233–255. https://doi.org/10.3390/d2020233
  • Maddison, W. P., & Maddison, D. R. (2009). Mesquite: A modular system for evolutionary analysis (Version 2.6) [Computer software]. Mesquite Project.
  • Maridet, O., & Ni, X. (2013). A new cricetid rodent from the early Oligocene of Yunnan, China, and its evolutionary implications for early Eurasian cricetids, Journal of Vertebrate Paleontology, 33, 185–194. https://doi.org/10.1080/02724634.2012.710283
  • Mein, P., & Freudenthal, M. (1971a). Les Cricetidae (Mammalia, Rodentia) du Néogène Moyen de Vieux-Collonges. Part 1. Le genre Cricetodon Lartet, 1851. Scripta Geologica, 5, 1–51.
  • Mein, P., & Freudenthal, M. (1971b). Une nouvelle classification des Cricetidae. du Tertiaire de l'Europe. Scripta Geologica, 2, 1–37.
  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 gateway computing environments workshop (pp. 1–8). IEEE.
  • Prieto, J., Angelone, C., Casanovas-Vilar, I., Gross, M., Hir, J., van den Hoek Ostende L. W., Maul, L. C., & Vasilyan, D. (2014). The small mammals from Gratkorn: An overview. Palaeobiodiversity and Palaeoenvironments, 94, 135–162. https://doi.org/10.1007/s12549-013-0147-3
  • Prieto, J., Böhme, M., & Gross, M. (2010). The cricetid rodents from Gratkorn (Austria, Styria): A benchmark locality for the continental Sarmatian sensu stricto (late Middle Miocene) in the Central Paratethys. Geologica Carpathica, 61, 419–436. https://doi.org/10.2478/v10096-010-0025-0
  • Prieto, J., & Rummel, M. (2016). Some consideration on small mammal evolution in Southern Germany, with emphasis on Late Burdigalian-Earliest Tortonian (Miocene) cricetid rodents. Comptes Rendus Palevol, 15, 837–854. https://doi.org/10.1016/j.crpv.2016.08.002
  • Ronquist, F., Lartillot, N., & Phillips, M. J. (2016). Closing the gap between rocks and clocks using total-evidence dating. Philosophical Transactions of the Royal Society B, 371, 20150136. https://doi.org/10.1098/rstb.2015.0136
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
  • Rummel, M. (1998). Die Cricetiden aus dem Mittel und Obermiozän der Türkei. Documenta Naturae, 123, 1–300.
  • Rummel, M. (1999). Tribe Cricetodontini. In G. Rössner & K. Heissig (Eds.), The Miocene land mammals of Europe (pp. 359–362). Verlag Dr. Friedrich Pfeil.
  • Sanjuan, J., Alqudah, M., Neubauer, T., Holmes, J., & Khairallah, C. M. (2019). Palaeoenvironmental evolution of the late Miocene Paleolake at Zahle (Bekaa Valley, Lebanon). Palaeogeography Palaeoclimatology Palaeoecology, 524, 70–84. https://doi.org/10.1016/j.palaeo.2019.03.031
  • Sarica-Filoreau, N. (2002). Faunes de Rongeurs Néogènes et Quaternaires des Grabens d’Anatolie occidentale. Systématique, biochronologie et implications tectoniques [D. Phil. thesis]. Muséum national d’Histoire naturelle.
  • Sen, S. (2016). Late Miocene mammal locality of Küçükçekmece, European Turkey. Geodiversitas, 38, 299–314.
  • Sen, S. & Erbajeva, M. (2011). A new species of Gobicricetodon Qiu, 1966 (Mammalia, Rodentia, Cricetidae) from the middle Miocene Aya Cave, Lake Baikal. Vertebrata PalAsiatica, 49, 257–274.
  • Sen, S., & Ünay, E. (1979). Cricetodontini (Rodentia, Mammalia) miocenes de Turquie; evolution et biostratigraphie. Bulletin de la Société Géologique de France, 20, 837–840.
  • Simões, T. R., Caldwell, M. W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., Bernardini, F., Mancini, L., & Nydam, R. L. (2018). The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557, 706–709. https://doi.org/10.1038/s41586-018-0093-3
  • Simões, T. R., Caldwell, M. W., & Pierce, S. E. (2020b). Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biology, 18, 191.
  • Simões, T. R., Vernygora, O., Caldwell, M. W., & Pierce, S. E. (2020a). Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nature Communications, 11, 3322. https://doi.org/10.1186/s12915-020-00901-5
  • Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.
  • Stadler, T. (2010). Sampling-through-time in birth–death trees. Journal of Theoretical Biology, 267, 396–404. https://doi.org/10.1016/j.jtbi.2010.09.010
  • Stehlin, H. G., & Schaub, S. (1951). Die Trigonodontie der simplicidentaten Nager. Schweizerischen Paläontologischen Abhandlungen, 62, 1–385.
  • Tobien, H. (1978). New species of Cricetodontini (Rodentia, Mammalia) from the Miocene of Turkey. Mainzer geowissenschaftliche Mitteilungen, 6, 209–219.
  • Ünay, E. (1980). The Cricetodontini (Rodentia) from the Bayraktepe section (Çanakkale, Turkey). Proceedings of the Koninklijke Nederlands Akademie van Wetenschappen B, 83, 399–418.
  • Ünay, E., de Bruijn, H., & Saraç, G. (2003). A preliminary zonation of the continental Neogene of Anatolia based on rodents. Deinsea, 10, 539–547.
  • van de Weerd, A. (1976). Rodent fauna of the Mio–Pliocene continental sediments of the Teruel–Alfambra region, Spain. Utrecht Micropaleontological Bulletins, Special Publication, 2, 1–185.
  • Varela, L., Tambusso, P. S., McDonald, H. G., Fariña, R. A. (2019). Phylogeny, macroevolutionary trends and historical biogeography of sloths: Insights from a Bayesian morphological clock analysis. Systematic Biology, 68, 204–218. https://doi.org/10.1093/sysbio/syy058
  • Walley, C. D. (1997). The lithostratigraphy of Lebanon: A review. Lebanese Science Bulletin, 10, 81–108.
  • Yu, Y., Harris, A. J., Blair, C., & Xingjin, H. (2015). RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.