260
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Viscoelasticity of hydrating shotcrete as key to realistic tunnel shell stress assessment with the New Austrian Tunneling Method

, , , &
Received 14 Mar 2024, Accepted 14 Mar 2024, Published online: 30 Apr 2024

References

  • L. Müller, Removing misconceptions on the New Austrian Tunnelling Method, Tunn. Tunn. Int., vol. 10, no. 8, pp. 29–32, 1978.
  • M. Karakuş, and R.J. Fowell, An insight into the New Austrian Tunnelling Method (NATM). In, 7th Regional Rock Mechanics Symposium, Sivas, Turkey, pp. 14, 2004.
  • L. Rabcewicz, The New Austrian Tunnelling Method, part one, Water Power, vol. 16, pp. 453–457, 1964.
  • L. Rabcewicz, The New Austrian Tunnelling Method, part two, Water Power, vol. 16, pp. 511–515, 1964.
  • L. Rabcewicz, The New Austrian Tunnelling Method, part three, Water Power, vol. 17, pp. 19–24, 1965.
  • W. Schubert, A. Steindorfer, and E.A. Button, Displacement monitoring in tunnels - an overview, Felsbau, vol. 20, pp. 7–15, 2002.
  • W. Schubert, and A. Steindorfer, Selective displacement monitoring during tunnel excavation, Felsbau, vol. 14, no. 2, pp. 93–97, 1996.
  • A. Steindorfer, W. Schubert, and K. Rabensteiner, Problemorientierte Auswertung geotechnischer Messungen - Neue Hilfsmittel und Anwendungsbeispiele [Advanced analysis of geotechnical displacement monitoring data: new tools and examples of application], Felsbau, vol. 13, no. 6, pp. 386–390, 1995.
  • C. Hellmich, J. Macht, and H.A. Mang, Ein hybrides Verfahren zur Bestimmung der Auslastung von Spritzbetonschalen [A hybrid method for determination of the degree of utilization of shotcrete tunnel shells], Felsbau, vol. 17, no. 5, pp. 422–425, 1999.
  • C. Hellmich, H.A. Mang, and F.J. Ulm, Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3D in situ displacement measurements and thermochemoplastic material law, Comput. Struct., vol. 79, no. 22-25, pp. 2103–2115, 2001. DOI: 10.1016/S0045-7949(01)00057-8.
  • R. Lackner, J. Macht, C. Hellmich, and H. Mang, Hybrid method for analysis of segmented shotcrete tunnel linings, J. Geotech. Geoenviron. Eng., vol. 128, no. 4, pp. 298–308, 2002. DOI: 10.1061/(ASCE)1090-0241(2002)128:4(298).
  • M. Brandtner, B. Moritz, and P. Schubert, On the challenge of evaluating stress in a shotcrete lining: experiences gained in applying the hybrid analysis method, Felsbau, vol. 25, no. 5, pp. 93–98, 2007.
  • J.-L. Zhang, C. Vida, Y. Yuan, C. Hellmich, H.A. Mang, and B. Pichler, A hybrid analysis method for displacement-monitored segmented circular tunnel rings, Eng. Struct., vol. 148, pp. 839–856, 2017. DOI: 10.1016/j.engstruct.2017.06.049.
  • R. Scharf, B. Pichler, R. Heissenberger, B. Moritz, and C. Hellmich, Data-driven analytical mechanics of aging viscoelastic shotcrete tunnel shells, Acta Mech., vol. 233, no. 8, pp. 2989–3019, 2022. DOI: 10.1007/s00707-022-03235-1.
  • W. Schubert, and B. Moritz, State of the art in evaluation and interpretation of displacement monitoring data in tunnels/Stand der Auswertung und Interpretation von Verschiebungsmessdaten bei Tunneln, Geomech. Tunnell., vol. 4, no. 5, pp. 371–380, 2011. DOI: 10.1002/geot.201100033.
  • S. Ullah, B. Pichler, S. Scheiner, and C. Hellmich, Shell-specific interpolation of measured 3D displacements, for micromechanics-based rapid safety assessment of shotcrete tunnels, Comput. Model. Eng. Sci., vol. 57, no. 3, pp. 279–316, 2010.
  • G.J. Creus, Basic concepts; integral representation. In: Viscoelasticity – Basic Theory and Applications to Concrete Structures., Springer Verlag, Berlin Heidelberg New York Tokyo, pp. 1–17, 1986.
  • J. Salençon, Viscoelastic Modeling for Structural Analysis. John Wiley & Sons, Hoboken, NJ, USA, 2019.
  • F.J. Ulm, and O. Coussy, Strength growth as chemo-plastic hardening in early age concrete, J. Eng. Mech., vol. 122, no. 12, pp. 1123–1132, 1996. DOI: 10.1061/(ASCE)0733-9399(1996)122:12(1123).
  • C. Hellmich, F.J. Ulm, and H.A. Mang, Multisurface chemoplasticity. I: material model for shotcrete, J. Eng. Mech., vol. 125, no. 6, pp. 692–701, 1999. DOI: 10.1061/(ASCE)0733-9399(1999)125:6(692).
  • M.F. Ruiz, A. Muttoni, and P.G. Gambarova, Relationship between nonlinear creep and cracking of concrete under uniaxial compression, J. Adv. Concr. Technol., vol. 5, no. 3, pp. 383–393, 2007. DOI: 10.3151/jact.5.383.
  • L. Boltzmann, Zur Theorie der elastischen Nachwirkung [On the theory of elastic after effect], Sitzungsber. Kaiserlich. Akad. Wiss.(Wien) Math. Naturwiss. Classe., vol. 70, pp. 275–306, 1874.
  • H. Markovitz, Boltzmann and the beginnings of linear viscoelasticity, Trans. Soc. Rheol., vol. 21, no. 3, pp. 381–398, 1977. DOI: 10.1122/1.549444.
  • M.E. Gurtin, Variational principles in the linear theory of viscoelasticity, Arch. Ration. Mech. Anal., vol. 13, no. 1, pp. 179–191, 1963. DOI: 10.1007/BF01262691.
  • S. Scheiner, and C. Hellmich, Continuum microviscoelasticity model for aging basic creep of early-age concrete, J. Eng. Mech., vol. 135, no. 4, pp. 307–323, 2009. DOI: 10.1061/(ASCE)0733-9399(2009)135:4(307).
  • P. Acker, Micromechanical analysis of creep and shrinkage mechanisms. In: Creep, Shrinkage and Durability Mechanics of Concrete and Other Quasi-Brittle Materials, Elsevier, Amsterdam, Cambridge, MA, pp. 15–25, 2001.
  • O. Bernard, F.J. Ulm, and E. Lemarchand, A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cem. Concr. Res., vol. 33, no. 9, pp. 1293–1309, 2003. DOI: 10.1016/S0008-8846(03)00039-5.
  • C. Hellmich, and H.A. Mang, Shotcrete elasticity revisited in the framework of continuum micromechanics: from submicron to meter level, J. Mater. Civ. Eng., vol. 17, no. 3, pp. 246–256, 2005. DOI: 10.1061/(ASCE)0899-1561(2005)17:3(246).
  • M. Königsberger, M. Irfan-Ul-Hassan, B. Pichler, and C. Hellmich, Downscaling based identification of nonaging power-law creep of cement hydrates, J. Eng. Mech., vol. 142, no. 12, pp. 04016106, 2016. DOI: 10.1061/(ASCE)EM.1943-7889.0001169.
  • L. D'Aloia, and G. Chanvillard, Determining the “apparent” activation energy of concrete: ea—numerical simulations of the heat of hydration of cement, Cem. Concr. Res., vol. 32, no. 8, pp. 1277–1289, 2002. DOI: 10.1016/S0008-8846(02)00791-3.
  • M. Irfan-Ul-Hassan, B. Pichler, R. Reihsner, and C. Hellmich, Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests, Cem. Concr. Res., vol. 82, pp. 36–49, 2016. DOI: 10.1016/j.cemconres.2015.11.007.
  • N. Laws, and R. McLaughlin, Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. Lond. A. Math. Phys. Sci., vol. 359, no. 1697, pp. 251–273, 1978.
  • P. Laplante, “Propriétés mécaniques des bétons durcissants: analyse comparée des bétons classiques et à très hautes performances.” PhD thesis, Marne-la-Vallée, ENPC, 1993.
  • D.S. Atrushi, Tensile and Compressive Creep of Young Concrete: Testing and Modelling. Fakultet for Ingeniørvitenskap og Teknologi, pp. 333, 2003.
  • C. Truesdell, Hypo-elasticity, Indiana Univ. Math. J., vol. 4, no. 1, pp. 83–133, 1955. DOI: 10.1512/iumj.1955.4.54002.
  • K.R. Rajagopal, and A.R. Srinivasa, On a class of non-dissipative materials that are not hyperelastic, Proc. R Soc. A., vol. 465, no. 2102, pp. 493–500, 2009. DOI: 10.1098/rspa.2008.0319.
  • C. Morin, S. Avril, and C. Hellmich, Non-affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation, Z Angew. Math. Mech., vol. 98, no. 12, pp. 2101–2121, 2018. DOI: 10.1002/zamm.201700360.
  • K.R. Rajagopal, and A.R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials, Proc. R Soc. A, vol. 467, no. 2125, pp. 39–58, 2011. DOI: 10.1098/rspa.2010.0136.
  • S. Ullah, B. Pichler, S. Scheiner, and C. Hellmich, Influence of shotcrete composition on load-level estimation in NATM-tunnel shells: micromechanics-based sensitivity analyses, Num. Anal. Meth. Geomechanics, vol. 36, no. 9, pp. 1151–1180, 2012. DOI: 10.1002/nag.1043.
  • M. Irfan-Ul-Hassan, M. Königsberger, R. Reihsner, C. Hellmich, and B. Pichler, How water-aggregate interactions affect concrete creep: multiscale analysis, J. Nanomech. Micromech., vol. 7, no. 4, pp. 16, 2017. DOI: 10.1061/(ASCE)NM.2153-5477.0000135.
  • E. Binder, M. Königsberger, R. Díaz-Flores, H.A. Mang, C. Hellmich, and B.L.A. Pichler, Thermally activated viscoelasticity of cement paste: minute-long creep tests and micromechanical link to molecular properties, Cem. Concr. Res., vol. 163, pp. 107014, 2023. DOI: 10.1016/j.cemconres.2022.107014.
  • M. Ausweger, et al., Early-age evolution of strength, stiffness, and non-aging creep of concretes: experimental characterization and correlation analysis, Materials, vol. 12, no. 2, pp. 207, 2019. DOI: 10.3390/ma12020207.
  • B.T. Tamtsia, J.J. Beaudoin, and J. Marchand, The early age short-term creep of hardening cement paste: load-induced hydration effects, Cem. Concr. Compos., vol. 26, no. 5, pp. 481–489, 2004. DOI: 10.1016/S0958-9465(03)00079-9.
  • CEB-FIB, Model Code for Concrete Structures 2010. Berlin, Germany: Ernst & Sohn, 2010.
  • D.C. Drucker, and W. Prager, Soil mechanics and plastic analysis or limit design, Quart. Appl. Math., vol. 10, no. 2, pp. 157–165, 1952. DOI: 10.1090/qam/48291.
  • H. Kupfer, Das Verhalten Des Betons Unter Mehrachsiger Kurzzeitbelastung Unter Besonderer Berücksichtigung Der Zweiachsigen Beanspruchung [the Behavior of Concrete under Multiaxial Short Time Loading Especially considering the Biaxial Stress]. DAfStb Heft, 229. Ernst & Sohn, 1973.
  • J. Salençon, Virtual Work Approach to Mechanical Modeling. John Wiley & Sons, Hoboken, NJ, USA, 2018.
  • P. Germain, Mécanique,. Ellipses, Paris, France, 1986.
  • M. Touratier, A refined theory of laminated shallow shells, Int. J. Solids Struct., vol. 29, no. 11, pp. 1401–1415, 1992. DOI: 10.1016/0020-7683(92)90086-9.
  • W. Flügge, Stresses in Shells,. Springer Science & Business Media, Springer-Verlag, Berlin Heidelberg, 1960.
  • J. Sulem, M. Panet, and A. Guenot, An analytical solution for time-dependent displacements in a circular tunnel. Int. J. Rock Mech, Min. Sci. Geomech. Abstr., vol. 24, pp. 155–164, 1987. DOI: 10.1016/0148-9062(87)90523-7.
  • F. Pacher, Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaues, In Grundfragen auf dem Gebiete der Geomechanik/Principles in the Field of Geomechanics: XIV. Kolloquium der Österreichischen Regionalgruppe der Internationalen Gesellschaft für Felsmechanik/14th Symposium of the Austrian Regional Group of the International Society for Rock Mechanics Salzburg, 27. und 28. September 1963, pages 149–161. Springer, 1964.
  • S. Cheng, On an accurate theory for circular cylindrical shells, J. Appl. Mech., vol. 40, no. 2, pp. 582–588, 1973. DOI: 10.1115/1.3423028.
  • S. Ullah, B. Pichler, and C. Hellmich, Modeling ground-shell contact forces in NATM tunneling based on three-dimensional displacement measurements, J. Geotech. Geoenviron. Eng., vol. 139, no. 3, pp. 444–457, 2013. DOI: 10.1061/(ASCE)GT.1943-5606.0000791.
  • V.W. Ramspacher, and H. Druckfeuchter, Baulos 3 - Siebergtunnel [Construction lot 3 - Sieberg tunnel] (in German), Felsbau., vol. 17, no. 2, pp. 84–89, 1999.
  • A. Razgordanisharahi, M. Sorgner, T. Pilgerstorfer, B. Moritz, C. Hellmich, and B.L.A. Pichler, Realistic long-term stress levels in a deep segmented tunnel lining, from hereditary mechanics-informed evaluation of strain measurements, Tunnelling Underground Space Technol., vol. 145, pp. 105602, 2024. DOI: 10.1016/j.tust.2024.105602.
  • M. Caputo, and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2015.
  • M. Di Paola, A. Pirrotta, and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., vol. 43, no. 12, pp. 799–806, 2011. DOI: 10.1016/j.mechmat.2011.08.016.
  • M. Marin, H. Alfadil, A.E. Abouelregal, and E. Carrera, Goufo-caputo fractional viscoelastic photothermal model of an unbounded semiconductor material with a cylindrical cavity, Mech. Adv. Mater. Struct., pp. 1–9, 2023. DOI: 10.1080/15376494.2023.2278181.