106
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Osteopontin-driven partial epithelial-mesenchymal transition governs the development of middle ear cholesteatoma

, , , , , & show all
Pages 537-554 | Received 10 Sep 2023, Accepted 17 Apr 2024, Published online: 25 Apr 2024

References

  • Isaacson G. Diagnosis of pediatric cholesteatoma. Pediatrics. 2007;120(3):603–608. doi: 10.1542/peds.2007-0120
  • Nevoux J, Lenoir M, Roger G, et al. Childhood cholesteatoma. Eur Ann Otorhinolaryngol Head Neck Dis. 2010;127(4):143–150. doi: 10.1016/j.anorl.2010.07.001
  • Semaan MT, Megerian CA. The pathophysiology of cholesteatoma. Otolaryngol Clin North Am. 2006;39(6):1143–1159. doi: 10.1016/j.otc.2006.08.003
  • Barath K, Huber AM, Stampfli P, et al. Neuroradiology of cholesteatomas. AJNR Am J Neuroradiol. 2011;32(2):221–229. doi: 10.3174/ajnr.A2052
  • Xie S, Xiang Y, Wang X, et al. Acquired cholesteatoma epithelial hyperproliferation: roles of cell proliferation signal pathways. Laryngoscope. 2016;126(8):1923–1930. doi: 10.1002/lary.25834
  • Prasad SC, Shin SH, Russo A, et al. Current trends in the management of the complications of chronic otitis media with cholesteatoma. Curr Opin Otolaryngol Head Neck Surg. 2013;21(5):446–454. doi: 10.1097/MOO.0b013e3283646467
  • Mustafa A, Heta A, Kastrati B, et al. Complications of chronic otitis media with cholesteatoma during a 10-year period in Kosovo. Eur Arch Otorhinolaryngol. 2008;265(12):1477–1482. doi: 10.1007/s00405-008-0707-8
  • Smith JA, Danner CJ. Complications of chronic otitis media and cholesteatoma. Otolaryngol Clin North Am. 2006;39(6):1237–1255. doi: 10.1016/j.otc.2006.09.001
  • Britze A, Moller ML, Ovesen T. Incidence, 10-year recidivism rate and prognostic factors for cholesteatoma. J Laryngol Otol. 2017;131(4):319–328. doi: 10.1017/S0022215117000299
  • Djurhuus BD, Skytthe A, Christensen K, et al. Cholesteatoma in Danish children – a national study of changes in the incidence rate over 34 years. Int J Pediatr Otorhinolaryngol. 2015;79(2):127–130. doi: 10.1016/j.ijporl.2014.11.020
  • Shibata S, Murakami K, Umeno Y, et al. Epidemiological study of cholesteatoma in Fukuoka City. J Laryngol Otol. 2015;129(Suppl 2):S6–11. doi: 10.1017/S002221511400231X
  • Moller PR, Pedersen CN, Grosfjeld LR, et al. Recurrence of Cholesteatoma - a retrospective study including 1,006 patients for more than 33 years. Int Arch Otorhinolaryngol. 2020;24(1):e18–e23. doi: 10.1055/s-0039-1697989
  • Ferlito A. A review of the definition, terminology and pathology of aural cholesteatoma. J Laryngol Otol. 1993;107(6):483–488. doi: 10.1017/S0022215100123539
  • Kuo CL, Shiao AS, Yung M, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int. 2015;2015:1–17. doi: 10.1155/2015/854024
  • Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope. 2015;125(1):234–240. doi: 10.1002/lary.24890
  • Bujia J, Holly A, Sudhoff H, et al. Identification of proliferating keratinocytes in middle ear cholesteatoma using the monoclonal antibody ki-67. ORL J Otorhinolaryngol Relat Spec. 1996;58(1):23–26. doi: 10.1159/000276789
  • Yamamoto-Fukuda T, Akiyama N, Kojima H. Keratinocyte growth factor (KGF) induces stem/progenitor cell growth in middle ear mucosa. Int J Pediatr Otorhinolaryngol. 2020;128:109699. doi: 10.1016/j.ijporl.2019.109699
  • Jin BJ, Min HJ, Jeong JH, et al. Expression of EGFR and microvessel density in middle ear cholesteatoma. Clin Exp Otorhinolaryngol. 2011;4(2):67–71. doi: 10.3342/ceo.2011.4.2.67
  • Alves AL, Pereira CSB, Carvalho Mde F, et al. EGFR expression in acquired middle ear cholesteatoma in children and adults. Eur J Pediatr. 2012;171(2):307–310. doi: 10.1007/s00431-011-1526-2
  • Akiyama N, Yamamoto-Fukuda T, Yoshikawa M, et al. Evaluation of YAP signaling in a rat tympanic membrane under a continuous negative pressure load and in human middle ear cholesteatoma. Acta Otolaryngol. 2017;137(11):1158–1165. doi: 10.1080/00016489.2017.1351040
  • Yamamoto-Fukuda T, Akiyama N, Kojima H. L1CAM–ILK-YAP mechanotransduction drives proliferative activity of epithelial cells in middle ear cholesteatoma. Am J Pathol. 2020;190(8):1667–1679. doi: 10.1016/j.ajpath.2020.04.007
  • Zhang QA, Hamajima Y, Zhang Q, et al. Identification of Id1 in acquired middle ear cholesteatoma. Arch Otolaryngol Head Neck Surg. 2008;134(3):306–310. doi: 10.1001/archotol.134.3.306
  • Hamajima Y, Komori M, Preciado DA, et al. The role of inhibitor of DNA-binding (Id1) in hyperproliferation of keratinocytes: the pathological basis for middle ear cholesteatoma from chronic otitis media. Cell Prolif. 2010;43(5):457–463. doi: 10.1111/j.1365-2184.2010.00695.x
  • Nagel J, Wollner S, Schurmann M, et al. Stem cells in middle ear cholesteatoma contribute to its pathogenesis. Sci Rep. 2018;8(1):6204. doi: 10.1038/s41598-018-24616-4
  • Lyakhovitsky A, Barzilai A, Fogel M, et al. Expression of E-cadherin and beta-catenin in cutaneous squamous cell carcinoma and its precursors. Am J Dermatopathol. 2004;26(5):372–378. doi: 10.1097/00000372-200410000-00005
  • Wang C, Wang Z, Chen C, et al. A low MW inhibitor of CD44 dimerization for the treatment of glioblastoma. Br J Pharmacol. 2020;177(13):3009–3023. doi: 10.1111/bph.15030
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428. doi: 10.1172/JCI39104
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. doi: 10.1038/nrm3758
  • Pal A, Barrett TF, Paolini R, et al. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene. 2021;40(32):5049–5065. doi: 10.1038/s41388-021-01868-5
  • Chen S, Zhang M, Li J, et al. β-catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J Extracell Vesicles. 2022;11(3):e12203. doi: 10.1002/jev2.12203
  • Moorman HR, Poschel D, Klement JD, et al. Osteopontin: a key regulator of tumor progression and immunomodulation. Cancers (Basel). 2020;12(11):3379. doi: 10.3390/cancers12113379
  • Shirasaki T, Honda M, Yamashita T, et al. The osteopontin-CD44 axis in hepatic cancer stem cells regulates IFN signaling and HCV replication. Sci Rep. 2018;8(1):13143. doi: 10.1038/s41598-018-31421-6
  • Nallasamy P, Nimmakayala RK, Karmakar S, et al. Pancreatic tumor microenvironment factor promotes cancer stemness via SPP1–CD44 axis. Gastroenterology. 2021;161(6):1998–2013.e7. doi: 10.1053/j.gastro.2021.08.023
  • Ouhtit A, Rizeq B, Saleh HA, et al. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci. 2018;14(13):1782–1790. doi: 10.7150/ijbs.23586
  • Lin YH, Yang-Yen HF. The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem. 2001;276(49):46024–46030. doi: 10.1074/jbc.M105132200
  • Melo AA, Caldas Neto SS, Leao FS, et al. Effect of intratympanic mitomycin C on the development of cholesteatoma and otitis media in rats. J Laryngol Otol. 2013;127(4):359–363. doi: 10.1017/S002221511300011X
  • Kokten N, Tuysuz O, Zenginkinet T, et al. Inhibitory effect of mesna and 5-fluorouracil on propylene glycol-induced cholesteatoma in rats. Acta Otorhinolaryngol Ital. 2021;41(5):481–486. doi: 10.14639/0392-100X-N1392
  • Yesilova M, Gorur K, Ismi O, et al. The role of Rho/Rho-kinase pathway in the pathogenesis of cholesteatoma. Otol Neurotol. 2017;38(4):516–520. doi: 10.1097/MAO.0000000000001344
  • Wang S, Xie L, Zhang Y, et al. Expression of prostaglandin E2 receptors in acquired middle ear cholesteatoma. Clin Exp Otorhinolaryngol. 2018;11(1):17–22. doi: 10.21053/ceo.2017.00304
  • Lin J, Ye Q, Wang Y, et al. Wnt/β-catenin signaling regulates pathogenesis of human middle ear cholesteatoma. Int J Clin Exp Pathol. 2019;12:1154–1162.
  • Fang L, Chen L, Lin B, et al. Analysis of inflammatory and homeostatic roles of tissue-resident macrophages in the progression of cholesteatoma by RNA-Seq. Immunol Invest. 2021;50(6):609–621. doi: 10.1080/08820139.2020.1781161
  • Xie S, Jin L, He J, et al. Analysis of mRNA m6A modification and mRNA expression profiles in middle ear cholesteatoma. Front Genet. 2023;14:1188048. doi: 10.3389/fgene.2023.1188048
  • Liang Q, Long R, Li S, et al. Bacterial diversity of middle ear cholesteatoma by 16S rRNA gene sequencing in China. Funct Integr Genomics. 2023;23(2):138. doi: 10.1007/s10142-023-01068-2
  • Westerberg J, Granath A, Drakskog C, et al. Nitric oxide is locally produced in the human middle ear and is reduced by acquired Cholesteatoma. Otol Neurotol. 2022;43(2):e198–e204. doi: 10.1097/MAO.0000000000003395
  • Gao M, Xiao H, Liang Y, et al. The hyperproliferation mechanism of cholesteatoma based on proteomics: SNCA promotes autophagy-mediated cell proliferation through the PI3K/AKT/CyclinD1 signaling pathway. Mol & Cell Proteomics. 2023;22(9):100628. doi: 10.1016/j.mcpro.2023.100628
  • Schurmann M, Oppel F, Shao S, et al. Chronic inflammation of middle ear cholesteatoma promotes its recurrence via a paracrine mechanism. Cell Commun Signal. 2021;19(1):25. doi: 10.1186/s12964-020-00690-y
  • Yamamoto-Fukuda T, Akiyama N, Takahashi M, et al. Keratinocyte growth factor (KGF) modulates epidermal progenitor cell kinetics through activation of p63 in middle ear cholesteatoma. J Assoc Res Otolaryngol. 2018;19(3):223–241. doi: 10.1007/s10162-018-0662-z
  • Yamamoto-Fukuda T, Akiyama N, Tatsumi N, et al. Keratinocyte growth factor stimulates growth of p75+ neural crest lineage cells during middle ear cholesteatoma formation in mice. Am J Pathol. 2022;192(11):1573–1591. doi: 10.1016/j.ajpath.2022.07.010
  • Yamamoto-Fukuda T, Akiyama N, Kojima H. Super-enhancer acquisition drives FOXC2 expression in middle ear cholesteatoma. J Assoc Res Otolaryngol. 2021;22(4):405–424. doi: 10.1007/s10162-021-00801-7
  • Stone RC, Pastar I, Ojeh N, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365(3):495–506. doi: 10.1007/s00441-016-2464-0
  • Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–715. doi: 10.1016/j.cell.2008.03.027
  • Nieto MA, Huang RY, Jackson RA, et al. Emt: 2016. Cell. 2016;166(1):21–45. doi: 10.1016/j.cell.2016.06.028
  • Lei Y, Yan W, Lin Z, et al. Comprehensive analysis of partial epithelial mesenchymal transition-related genes in hepatocellular carcinoma. J Cell Mol Med. 2021;25(1):448–462. doi: 10.1111/jcmm.16099
  • Norgard RJ, Pitarresi JR, Maddipati R, et al. Calcium signaling induces a partial EMT. EMBO Rep. 2021;22(9):e51872. doi: 10.15252/embr.202051872
  • Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171(7):1611–1624.e24. doi: 10.1016/j.cell.2017.10.044
  • Pastushenko I, Brisebarre A, Sifrim A, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–468. doi: 10.1038/s41586-018-0040-3
  • Pastushenko I, Mauri F, Song Y, et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021;589(7842):448–455. doi: 10.1038/s41586-020-03046-1
  • Grande MT, Sanchez-Laorden B, Lopez-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989–997. doi: 10.1038/nm.3901
  • Peng W, Zhou X, Xu T, et al. BMP-7 ameliorates partial epithelial-mesenchymal transition by restoring SnoN protein level via Smad1/5 pathway in diabetic kidney disease. Cell Death Dis. 2022;13(3):254. doi: 10.1038/s41419-022-04529-x
  • Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific smad7 expression attenuates TGF-β–Mediated fibrogenesis and protects against liver damage. Gastroenterology. 2008;135(2):642–659. doi: 10.1053/j.gastro.2008.04.038
  • Nikitorowicz-Buniak J, Denton CP, Abraham D, et al. Partially evoked Epithelial-Mesenchymal Transition (EMT) is associated with increased TGFβ signaling within lesional scleroderma skin. PLoS One. 2015;10(7):e0134092. doi: 10.1371/journal.pone.0134092
  • Rittling SR, Singh R. Osteopontin in immune-mediated diseases. J Dent Res. 2015;94(12):1638–1645. doi: 10.1177/0022034515605270
  • Brown LF, Berse B, Van de Water L, et al. Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell. 1992;3(10):1169–1180. doi: 10.1091/mbc.3.10.1169
  • Weng X, Maxwell-Warburton S, Hasib A, et al. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab. 2022;33(5):318–332. doi: 10.1016/j.tem.2022.02.002
  • Denhardt DT, Noda M, O’Regan AW, et al. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 2001;107(9):1055–1061. doi: 10.1172/JCI12980
  • Zohar R, Suzuki N, Suzuki K, et al. Intracellular osteopontin is an integral component of the CD44-ERM complex involved in cell migration. J Cell Physiol. 2000;184(1):118–130. doi: 10.1002/(SICI)1097-4652(200007)184:1<118:AID-JCP13>3.0.CO;2-Y
  • Dai J, Peng L, Fan K, et al. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene. 2009;28(38):3412–3422. doi: 10.1038/onc.2009.189
  • Klement JD, Poschel DB, Lu C, et al. Osteopontin blockade immunotherapy increases cytotoxic T lymphocyte lytic activity and suppresses colon tumor progression. Cancers (Basel). 2021;13(5):1006. doi: 10.3390/cancers13051006
  • Shojaei F, Scott N, Kang X, et al. Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer. J Exp Clin Cancer Res. 2012;31(1):26. doi: 10.1186/1756-9966-31-26
  • Mi Z, Guo H, Russell MB, et al. RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther. 2009;17(1):153–161. doi: 10.1038/mt.2008.235
  • Cen C, Aziz M, Yang WL, et al. Osteopontin blockade attenuates renal injury after ischemia reperfusion by inhibiting NK cell infiltration. Shock. 2017;47(1):52–60. doi: 10.1097/SHK.0000000000000721
  • Zhao F, Zhang Y, Wang H, et al. Blockade of osteopontin reduces alloreactive CD8+ T cell–mediated graft-versus-host disease. Blood. 2011;117(5):1723–1733. doi: 10.1182/blood-2010-04-281659

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.