104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of swelling behaviour monolayer and double Layer polysaccharide based composite hydrogels

&
Pages 108-118 | Received 17 Oct 2023, Accepted 19 Feb 2024, Published online: 29 Feb 2024

References

  • Jing, H.; Huang, X.; Du, X.; Mo, L.; Ma, C.; Wang, H. Facile Synthesis of pH-Responsive Sodium Alginate/Carboxymethyl Chitosan Hydrogel Beads Promoted by Hydrogen Bond. Carbohydr. Polym. 2022, 278. DOI: 10.1016/j.carbpol.2021.118993.
  • Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A. D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C. N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers. 2017, 9(137), 137. DOI: 10.3390/polym9040137.
  • Deng, K. L.; Gou, Y. B.; Dong, L. R.; Li, Q.; Bai, L. B.; Gao, T.; Huang, C. Y.; Wang, S. L. Drug Release Behaviors of a pH/Temperature Sensitive Core-Shelled Bead with Alginate and Poly(n-Acryloylglycinates). Front. Mater. Sci. China. 2010, 4(4), 353–358. DOI: 10.1007/s11706-010-0105-1.
  • Hezaveh, H.; Muhamad, I. I. Effect of MgO Nanofillers on Burst Release Reduction from Hydrogel Nanocomposites. J. Mater. Sci. Mater. Med. 2013, 24(6), 1443–1453. DOI: 10.1007/s10856-013-4914-5.
  • Wu, J.; Kong, T.; Yeung, K. W. K.; Shum, H. C.; Cheung, K. M. C.; Wang, L.; To, M. K. T. Fabrication and Characterization of Monodisperse PLGA–Alginate Core–Shell Microspheres with Monodisperse Size and Homogeneous Shells for Controlled Drug Release. Acta. Biomater. 2013, 9(7), 7410–7419. DOI: 10.1016/j.actbio.2013.03.022.
  • Liang, Y. H.; Liu, C. H.; Liao, S. H.; Lin, Y. Y.; Tang, H. W.; Liu, S. Y.; Lai, I. R.; Wu, K. C. W. Cosynthesis of Cargo-Loaded Hydroxyapatite/Alginate Core–Shell Nanoparticles (Hap@alg) as pH-Responsive Nanovehicles by a Pre-Gel Method. ACS Appl. Mater. Interfaces. 2012, 4(12), 6720–6727. DOI: 10.1021/am301895u.
  • Plunkett, K. N.; Moore, J. S. Patterned Dual pH-Responsive Core−shell Hydrogels with Controllable Swelling Kinetics and Volumes. Langmuir. 2004, 20(16), 6535–6537. DOI: 10.1021/la049453y.
  • Ma, M.; Chiu, A.; Sahay, G.; Doloff, J. C.; Dholakia, N.; Thakrar, R.; Cohen, J.; Vegas, A.; Chen, D.; Bratlie, K. M., et al. Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation. Adv. Healthcare Mater. 2013, 2(5), 667–672. DOI: 10.1002/adhm.201200341.
  • Ahn, G.; Moon, J. Y.; Lee, I.; Yoon, S.; Lee, D. Core-Shell Type Complex Gelatin Scaffold Systems for Controlled Drug Release. Macromol. Res. 2014, 22(9), 1024–1031. DOI: 10.1007/s13233-014-2155-1.
  • Ma, Z.; Yang, X.; Ma, J.; Lv, J.; He, J.; Jia, D.; Qu, Y.; Chen, G.; Yan, H.; Zeng, R.Development of the Mussel-Inspired pH-Responsive Hydrogel Based on Bletilla Striata Polysaccharide with Enhanced Adhesiveness and Antioxidant Properties. Colloids Surf. B: Biointerfaces. 2021, 208. 10.1016/j.colsurfb.2021.112066.
  • Daniel-da-Silva, A. L.; Moreira, J.; Neto, R.; Estrada, A. C.; Gil, A. M.; Trindade, T. Impact of Magnetic Nanofillers in the Swelling and Release Properties of κ-Carrageenan Hydrogel Nanocomposites. Carbohydr. Polym. 2012, 87, 328–335. DOI: 10.1016/j.carbpol.2011.07.051.
  • Sarıyer, S.; Duranoğlu, D.; Doğan, Ö.; Küçük, İ. pH-Responsive Double Network Alginate/kappa-Carrageenan Hydrogel Beads for Controlled Protein Release: Effect of pH and Crosslinking Agent. J. Drug Delivery Sci. Technol. 2020, 56. DOI: 10.1016/j.jddst.2020.101551.
  • Doğan, Ö.; Bodur, B. Investigation of Hydroxyapatite Morphology at Different Experimental Conditions. Bulg. Chem. Commun. 2017, 49(I), 122–127.
  • Selvakumaran, S.; Muhamad, I. I. Evaluation of Kappa Carrageenan as Potential Carrier for Floating Drug Delivery System: Effect of Cross Linker. Int. J. Pharmaceutics. 2015, 496, 323–331. DOI: 10.1016/j.ijpharm.2015.10.005.
  • Kulkarni, R. V.; Boppana, R.; Mohan, G. K.; Mutalik, S.; Kalyane, N. V. pH-responsive interpenetrating network hydrogel beads of poly(acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: Synthesis, in vitro and in vivo evaluation. J. Coll. Interf. Sci. 2012, 367, 509–517. DOI: 10.1016/j.jcis.2011.10.025.
  • Li, L.; Zhao, J.; Sun, Y.; Yu, F.; Ma, J. Ionically Cross-Linked Sodium alginate/ĸ-Carrageenan Double-Network Gel Beads with Low-Swelling, Enhanced Mechanical Properties, and Excellent Adsorption Performance. Chem. Eng. J. 2019, 372, 1091–1103. DOI: 10.1016/j.cej.2019.05.007.
  • Wang, Q. S.; Zhu, X. N.; Jiang, H. L.; Wang, G. F.; Cui, Y. L. Protective Effects of Alginate-Chitosan Microspheres Loaded with Alkaloids from Coptis Chinensis Franch. and Evodia Rutaecarpa (Juss.) Benth. (Zuojin Pill) Against Ethanol-Induced Acute Gastric Mucosal Injury in Rats. Drug Des. Devel. Ther. 2015, 9, 6151–6165. DOI: 10.2147/DDDT.S96056.
  • Han, J.; Zhou, Z.; Yin, R.; Yang, D.; Nie, J. Alginate–Chitosan/hydroxyapatite Polyelectrolyte Complex Porous Scaffolds: Preparation and Characterization. Int. J. Biol. Macromol. 2010, 46(2), 199–205. DOI: 10.1016/j.ijbiomac.2009.11.004.
  • Chalitangkoon, J.; Wongkittisin, M.; Monvisade, P. Silver Loaded Hydroxyethylacryl Chitosan/Sodium Alginate Hydrogel Films for Controlled Drug Release Wound Dressings. Int. J. Biol. Macromol. 2020, 159, 194–203. DOI: 10.1016/j.ijbiomac.2020.05.061.
  • Dou, X. C.; Zhu, X. P.; Zhou, J.; Cai, H. Q.; Tang, J.; Li, Q. L. Minocycline-Released Hydroxyapatite–Gelatin Nanocomposite and Its Cytocompatibility in vitro. Biomed. Mater. 2011, 6(2), 025002. DOI: 10.1088/1748-6041/6/2/025002.
  • De Queiroz, A. A. A.; Passos, E. D.; Alves, S. D. B.; Silva, G. S.; Higa, O. Z.; Vitolo, M. Alginate–poly(vinyl alcohol) core–shell microspheres for lipase immobilization. J. Appl. Polym. Sci. 2006, 102(2), 1553–1560. DOI: 10.1002/app.23444.
  • Bischoff, R.; Cray, S. E. Polysiloxanes in macromolecular architecture. Prog. Polym. Sci. 1999, 24(2), 185–219. DOI: 10.1016/S0079-6700(99)00006-4.
  • Barros, J.; Ferraz, M. P.; Azeredo, J.; Fernandes, M. H.; Gomes, P. S.; Monteiro, F. J. Alginate-Nanohydroxyapatite Hydrogel System: Optimizing the Formulation for Enhanced Bone Regeneration. Mater. Sci. Eng. C. 2019, 105, 105. DOI: 10.1016/j.msec.2019.109985.
  • Mahdavinia, G. R.; Mosallanezhad, A.; Soleymani, M.; Sabzi, M. Magnetic- and pH-Responsive κ-Carrageenan/chitosan Complexes for Controlled Release of Methotrexate Anticancer Drug. Int. J. Biol. Macromol. 2017, 97, 209–217. DOI: 10.1016/j.ijbiomac.2017.01.012.
  • Hezaveh, H.; Muhamad, I. I. Modification and Swelling Kinetic Study of Kappa-Carrageenan-Based Hydrogel for Controlled Release Study. J. Taiwan Inst. Chem. Eng. 2013, 44, 182–191. DOI: 10.1016/j.jtice.2012.10.011.
  • Thang, N. H.; Chien, T. B.; Cuong, D. X. Polymer-based hydrogels applied in drug delivery: an overview. Gels. 2023, 9, 523. DOI: 10.3390/gels9070523.
  • Dai, H.; Ou, S.; Huang, Y.; Liu, Z.; Huang, H. Enhanced Swelling and Multiple-Responsive Properties of Gelatin/Sodium Alginate Hydrogels by the Addition of Carboxymethyl Cellulose Isolated from Pineapple Peel. Cellulose. 2018, 25, 593–606. DOI: 10.1007/s10570-017-1557-6.
  • Davidovich-Pinhas, M.; Bianco-Peled, H. A Quantitative Analysis of Alginate Swellling. Carbohydr. Polym. 2010, 79(4), 1020–1027. DOI: 10.1016/j.carbpol.2009.10.036.
  • Trivedi, J.; Chourasia, A. Sodium Salt of Partially Carboxymethylated Sodium Alginate-Graft-Poly(acrylonitrile): II Superabsorbency, Salt Sensitivity and Swelling Kinetics of Hydrogel, H-Na-PCMSA-G-PAN. Gels. 2023, 9(5), 407. DOI: 10.3390/gels9050407.
  • Pascalau, V.; Popescu, V.; Popescu, G. L.; Dudescu, M. C.; Borodi, G.; Dinescu, A. M.; Moldovan, M. Obtaining and characterizing alginate/k-carrageenan hydrogel cross-linked with adipic dihydrazide. Adv. Mater. Sci. Eng. 2013, 2013, 1–12. DOI: 10.1155/2013/380716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.