1,619
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sex-Specific Genetic Determinants of Asthma-COPD Phenotype and COPD in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data

ORCID Icon, , &
Pages 233-247 | Received 17 Feb 2023, Accepted 20 Jun 2023, Published online: 19 Jul 2023

References

  • GOLD_ACOS. _2015.pdf, https://goldcopd.org/wp-content/uploads/2016/04/GOLD_ACOS_2015.pdf. (accessed 17 May 2022).
  • Hardin M, Silverman EK, Barr RG, et al. The clinical features of the overlap between COPD and asthma. Respir Res. 2011;12(1):8. doi: 10.1186/1465-9921-12-127.
  • Papaiwannou A, Zarogoulidis P, Porpodis K, et al. Asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): current literature review. J Thorac Dis. 2014;6: s 146–S151.
  • Rhee CK, Yoon HK, Yoo KH, et al. Medical utilization and cost in patients with overlap syndrome of chronic obstructive pulmonary disease and asthma. COPD. 2014;11(2):163–170. doi: 10.3109/15412555.2013.831061.
  • Bujarski S, Parulekar AD, Sharafkhaneh A, et al. The asthma COPD overlap syndrome (ACOS). Curr Allergy Asthma Rep. 2015;15(3):7. doi: 10.1007/s11882-014-0509-6.
  • de Marco R, Marcon A, Rossi A, et al. Asthma, COPD and overlap syndrome: a longitudinal study in young European adults. Eur Respir J. 2015;46(3):671–679. doi: 10.1183/09031936.00008615.
  • Lange P, Çolak Y, Ingebrigtsen TS, et al. Long-term prognosis of asthma, chronic obstructive pulmonary disease, and asthma-chronic obstructive pulmonary disease overlap in the Copenhagen city heart study: a prospective population-based analysis. Lancet Respir Med. 2016;4(6):454–462. doi: 10.1016/S2213-2600(16)00098-9.
  • Koleade A, Farrell J, Mugford G, et al. Prevalence and risk factors of ACO (Asthma-COPD overlap) in aboriginal people. J Environ Public Health. 2018;2018:4657420. doi: 10.1155/2018/4657420.
  • Koleade A, Farrell J, Mugford G, et al. Female-specific risk factors associated with risk of ACO (asthma COPD overlap) in aboriginal people. J Asthma. 2020;57(9):925–932. doi: 10.1080/02770903.2019.1621890.
  • de Marco R, Pesce G, Marcon A, et al. The coexistence of asthma and chronic obstructive pulmonary disease (COPD): prevalence and risk factors in young, middle-aged and elderly people from the general population. PLOS One. 2013;8(5):e62985. doi: 10.1371/journal.pone.0062985.
  • Senthilselvan A, Beach J. Characteristics of asthma and COPD overlap syndrome (ACOS) in the Canadian population. J Asthma. 2019;56(11):1129–1137. doi: 10.1080/02770903.2018.1531997.
  • Wheaton AG, Pleasants RA, Croft JB, et al. Gender and asthma-chronic obstructive pulmonary disease overlap syndrome. J Asthma. 2016;53(7):720–731. doi: 10.3109/02770903.2016.1154072.
  • Aryal S, Diaz-Guzman E, Mannino DM. Influence of sex on chronic obstructive pulmonary disease risk and treatment outcomes. Int J Chron Obstruct Pulmon Dis. 2014;9:1145–1154. doi: 10.2147/COPD.S54476.
  • Ntritsos G, Franek J, Belbasis L, et al. Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2018;13:1507–1514. doi: 10.2147/COPD.S146390.
  • Ford ES, Croft JB, Mannino DM, et al. COPD surveillance—United States, 1999-2011. Chest. 2013;144(1):284–305. doi: 10.1378/chest.13-0809.
  • DeMeo DL. Sex and gender omic biomarkers in men and women with COPD. Chest. 2021;160(1):104–113. doi: 10.1016/j.chest.2021.03.024.
  • Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374:11.
  • Silverman EK. Genetics of COPD. Annu Rev Physiol. 2020;82:413–431. doi: 10.1146/annurev-physiol-021317-121224.
  • Hall R, Hall IP, Sayers I. Genetic risk factors for the development of pulmonary disease identified by genome-wide association. Respirology. 2019;24(3):204–214. doi: 10.1111/resp.13436.
  • Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494–505. doi: 10.1038/s41588-018-0342-2.
  • Cho MH, McDonald MLN, Zhou X, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–225. doi: 10.1016/S2213-2600(14)70002-5.
  • Odimba U, Senthilselvan A, Farrell J, et al. Current knowledge of Asthma-COPD overlap (ACO) genetic risk factors, characteristics, and prognosis. COPD. 2021;18(5):585–595. doi: 10.1080/15412555.2021.1980870.
  • Aryal S, Diaz-Guzman E, Mannino DM. COPD and gender differences: an update. Transl Res. 2013;162(4):208–218. doi: 10.1016/j.trsl.2013.04.003.
  • Sørheim IC, Johannessen A, Gulsvik A, et al. Gender differences in COPD: are women more susceptible to smoking effects than men? Thorax. 2010;65(6):480–485. doi: 10.1136/thx.2009.122002.
  • Silverman EK, Weiss ST, Drazen JM, et al. Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(6):2152–2158. doi: 10.1164/ajrccm.162.6.2003112.
  • Hardin M, Foreman M, Dransfield MT, et al. Sex-specific features of emphysema among current and former smokers with COPD. Eur Respir J. 2016;47(1):104–112. doi: 10.1183/13993003.00996-2015.
  • Gut-Gobert C, Cavaillès A, Dixmier A, et al. Women and COPD: do we need more evidence? Eur Respir Rev. 2019;28(151):180055. doi: 10.1183/16000617.0055-2018.
  • Martinez FJ, Curtis JL, Sciurba F, et al. Sex differences in severe pulmonary emphysema. Am J Respir Crit Care Med. 2007;176(3):243–252. doi: 10.1164/rccm.200606-828OC.
  • Perez TA, Castillo EG, Ancochea J, et al. Sex differences between women and men with COPD: a new analysis of the 3CIA study. Respir Med. 2020;171:106105. doi: 10.1016/j.rmed.2020.106105.
  • Gan WQ, Man SP, Postma DS, et al. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006;7(1):9. doi: 10.1186/1465-9921-7-52.
  • Amaral AFS, Strachan DP, Burney PGJ, et al. Female smokers are at greater risk of airflow obstruction than male smokers. UK Biobank. Am J Respir Crit Care Med. 2017;195(9):1226–1235. doi: 10.1164/rccm.201608-1545OC.
  • Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet. 2019;51(3):481–493. doi: 10.1038/s41588-018-0321-7.
  • Hardin M, Cho M, McDonald ML, et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur Respir J. 2014;44(2):341–350. doi: 10.1183/09031936.00216013.
  • John C, Guyatt AL, Shrine N, et al. Genetic associations and architecture of Asthma-COPD overlap. Chest. 2022;161(5):1155–1166. doi: 10.1016/j.chest.2021.12.674.
  • Raina P, Wolfson C, Kirkland S, et al. Cohort profile: the Canadian longitudinal study on aging (CLSA). Int J Epidemiol. 2019;48(6):1752–1753j. doi: 10.1093/ije/dyz173.
  • Forgetta V, Li R, Darmond-Zwaig C, et al. Cohort profile: genomic data for 26 622 individuals from the Canadian longitudinal study on aging (CLSA). BMJ Open. 2022;12(3):e059021. doi: 10.1136/bmjopen-2021-059021.
  • Purcell S, Chang C. General usage - PLINK 1.9, https://www.cog-genomics.org/plink/1.9/general_usage. (accessed 23 May 2022).
  • Pruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–2337. doi: 10.1093/bioinformatics/btq419.
  • Joo J, Himes B. Gene-based analysis reveals sex-specific genetic risk factors of COPD. AMIA Annu Symp Proc. 2021;2021:601–610.
  • Hardin M, Cho MH, Sharma S, et al. Sex-Based genetic association study identifies CELSR1 as a possible chronic obstructive pulmonary disease risk locus among women. Am J Respir Cell Mol Biol. 2017;56(3):332–341. doi: 10.1165/rcmb.2016-0172OC.
  • Myers RA, Scott NM, Gauderman WJ, et al. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum Mol Genet. 2014;23(19):5251–5259. doi: 10.1093/hmg/ddu222.
  • Bingle CD, Wilson K, Lunn H, et al. Human LPLUNC1 is a secreted product of goblet cells and minor glands of the respiratory and upper aerodigestive tracts. Histochem Cell Biol. 2010;133(5):505–515. doi: 10.1007/s00418-010-0683-0.
  • Wu J, Kobayashi M, Sousa EA, et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge*S. Mol Cell Proteomics. 2005;4(9):1251–1264. doi: 10.1074/mcp.M500041-MCP200.
  • Gao J, Ohlmeier S, Nieminen P, et al. Elevated sputum BPIFB1 levels in smokers with chronic obstructive pulmonary disease: a longitudinal study. Am J Physiol Lung Cell Mol Physiol. 2015;309(1):L17–L26. doi: 10.1152/ajplung.00082.2015.
  • De Smet EG, Seys LJ, Verhamme FM, et al. Association of innate defense proteins BPIFA1 and BPIFB1 with disease severity in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:11–27. doi: 10.2147/COPD.S144136.
  • Tam A, Churg A, Wright JL, et al. Sex differences in airway remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(8):825–834. doi: 10.1164/rccm.201503-0487OC.
  • Ruth KS, Day FR, Tyrrell J, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26(2):252–258. doi: 10.1038/s41591-020-0751-5.
  • Fuentes N, Silveyra P. Endocrine regulation of lung disease and inflammation. Exp Biol Med. 2018;243(17-18):1313–1322. doi: 10.1177/1535370218816653.
  • Becerra-Diaz M, Song M, Heller N. Androgen and androgen receptors as regulators of monocyte and macrophage biology in the healthy and diseased lung. Front Immunol. 2020;11:1698. doi: 10.3389/fimmu.2020.01698.
  • Morooka N, Ueguri K, Yee KKL, et al. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation. Biochem Biophys Res Commun. 2016;477(4):895–901. doi: 10.1016/j.bbrc.2016.06.155.
  • Wang X, Huang L, Jiang S, et al. Testosterone attenuates pulmonary epithelial inflammation in male rats of COPD model through preventing NRF1-derived NF-κB signaling. J Mol Cell Biol. 2021;13(2):128–140. doi: 10.1093/jmcb/mjaa079.
  • Guo WA, Knight PR, Raghavendran K. The receptor for advanced glycation end products and acute lung injury/acute respiratory distress syndrome. Intensive Care Med. 2012;38(10):1588–1598. doi: 10.1007/s00134-012-2624-y.
  • Leclerc E, Fritz G, Vetter SW, et al. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793(6):993–1007. doi: 10.1016/j.bbamcr.2008.11.016.
  • Xia C, Braunstein Z, Toomey AC, et al. S100 proteins as an important regulator of macrophage inflammation. Front Immunol. 2017;8:1908. doi: 10.3389/fimmu.2017.01908.
  • Piazza O, Leggiero E, De Benedictis G, et al. S100B induces the release of pro-inflammatory cytokines in alveolar type I-like cells. Int J Immunopathol Pharmacol. 2013;26(2):383–391. doi: 10.1177/039463201302600211.
  • Mayne BT, Bianco-Miotto T, Buckberry S, et al. Large scale gene expression Meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front Genet. 2016;7:183. doi: 10.3389/fgene.2016.00183.
  • Wilson CM, Magnaudeix A, Yardin C, et al. DC2 and keratinocyte-associated protein 2 (KCP2), subunits of the oligosaccharyltransferase complex, are regulators of the γ-Secretase-directed processing of amyloid precursor protein (APP) *. J Biol Chem. 2011;286(36):31080–31091. doi: 10.1074/jbc.M111.249748.
  • Spitzer P, Walter M, Göth C, et al. Pharmacological inhibition of amyloidogenic APP processing and knock-down of APP in primary human macrophages impairs the secretion of cytokines. Front Immunol. 2020;11:1967. doi: 10.3389/fimmu.2020.01967.
  • Bu XL, Cao GQ, Shen LL, et al. Serum amyloid-beta levels are increased in patients with chronic obstructive pulmonary disease. Neurotox Res. 2015;28(4):346–351. doi: 10.1007/s12640-015-9552-x.
  • Karoor V, Wick MJ, Sullivan T, et al. Cigarette smoke increases the expression of amyloid precursor protein in pulmonary artery smooth muscle cells. Am J Respir Crit Care Med. 2022;205: a 3021–A3021. Available from https://www.atsjournals.org/doi/pdf/10 .1164/ajrccm-conference.2022.205.1_MeetingAbstracts.A3021 doi: 10.1164/ajrccm-conference.2022.205.1_MeetingAbstracts.A3021.
  • Gillett MJ, Martins RN, Clarnette RM, et al. Relationship between testosterone, sex hormone binding globulin and plasma amyloid beta peptide 40 in older men with subjective memory loss or dementia. J Alzheimers Dis. 2003;5(4):267–269. doi: 10.3233/jad-2003-5401.
  • Ramsden M, Nyborg AC, Murphy MP, et al. Androgens modulate β-amyloid levels in male rat brain. J Neurochem. 2003;87(4):1052–1055. doi: 10.1046/j.1471-4159.2003.02114.x.
  • Rosario ER, Pike CJ. Androgen regulation of β-amyloid protein and the risk of Alzheimer’s disease. Brain Res Rev. 2008;57(2):444–453. doi: 10.1016/j.brainresrev.2007.04.012.
  • Atlantis E, Fahey P, Cochrane B, et al. Endogenous testosterone level and testosterone supplementation therapy in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMJ Open. 2013;3(8):e003127. doi: 10.1136/bmjopen-2013-003127.
  • Lin YN, Roy A, Yan W, et al. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol. 2007;27(19):6794–6805. doi: 10.1128/MCB.01029-07.
  • Fowler PA, Flannigan S, Mathers A, et al. Gene expression analysis of human fetal ovarian primordial follicle formation. J Clin Endocrinol Metab. 2009;94(4):1427–1435. doi: 10.1210/jc.2008-2619.
  • Lutz SM, Cho MH, Young K, et al. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet. 2015;16(1):11. doi: 10.1186/s12863-015-0299-4.
  • Verlaan DJ, Berlivet S, Hunninghake GM, et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet. 2009;85(3):377–393. doi: 10.1016/j.ajhg.2009.08.007.
  • Yan Q, Brehm J, Pino-Yanes M, et al. A meta-analysis of genome-wide association studies of asthma in puerto ricans. Eur Respir J. 2017;49(5):1601505. doi: 10.1183/13993003.01505-2016.
  • Naumova AK, Al Tuwaijri A, Morin A, et al. Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet. 2013;132(7):811–822. doi: 10.1007/s00439-013-1298-z.
  • Zhang J, Yan R, Wu C, et al. Spermatogenesis-associated 48 is essential for spermatogenesis in mice. Andrologia. 2018;50(6):e13027. doi: 10.1111/and.13027.
  • Vieira HR, Gonçalves GD, Vieira NA, et al. Pulmonary emphysema impairs male reproductive physiology due to testosterone and oxidative stress imbalance in mesocricetus auratus. Reprod Sci. 2020;27(11):2052–2062. doi: 10.1007/s43032-020-00224-4.
  • Brehm JM, Man Tse S, Croteau-Chonka DC, et al. A genome-wide association study of post-bronchodilator lung function in children with asthma. Am J Respir Crit Care Med. 2015;192(5):634–637. doi: 10.1164/rccm.201501-0047LE.
  • Brehm JM, Hagiwara K, Tesfaigzi Y, et al. Identification of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease. Thorax. 2011;66(12):1085–1090. doi: 10.1136/thoraxjnl-2011-200017.
  • Yang L, Zhou F, Zheng D, et al. FGF/FGFR signaling: from lung development to respiratory diseases. Cytokine Growth Factor Rev. 2021;62:94–104. doi: 10.1016/j.cytogfr.2021.09.002.
  • Bresson E, Seaborn T, Côté M, et al. Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod Biol Endocrinol. 2010;8:2. doi: 10.1186/1477-7827-8-2.
  • Laura RP, Ross S, Koeppen H, et al. MAGI-1: a widely expressed, alternatively spliced tight junction protein. Exp Cell Res. 2002;275(2):155–170. doi: 10.1006/excr.2002.5475.
  • Moré JM, Voelker DR, Silveira LJ, et al. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulm Med. 2010;10:53. doi: 10.1186/1471-2466-10-53.
  • Bowler RP. Surfactant protein D as a biomarker for chronic obstructive pulmonary disease. COPD. 2012;9(6):651–653. doi: 10.3109/15412555.2012.736317.
  • Shaykhiev R, Otaki F, Bonsu P, et al. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci. 2011;68(5):877–892. doi: 10.1007/s00018-010-0500-x.
  • Barnes PJ. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants. 2022;11(5):965. doi: 10.3390/antiox11050965.
  • Jiang Y, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:1153–1162. doi: 10.2147/COPD.S130168.
  • Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024–1032. doi: 10.1111/jcmm.13038.
  • Centenera MM, Scott JS, Machiels J, et al. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 2021;81(7):1704–1718. doi: 10.1158/0008-5472.CAN-20-2511.
  • Di Gregorio E, Borroni B, Giorgio E, et al. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014;95(2):209–217. doi: 10.1016/j.ajhg.2014.07.001.
  • Wu G, Xu R, Zhang P, et al. Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERβ-SATB2 pathway. J Cell Physiol. 2018;233(5):4194–4204. doi: 10.1002/jcp.26233.
  • Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Invest. 2000;106(10):1203–1204. doi: 10.1172/JCI11468.
  • Raherison-Semjen C, Mezzi K, Kostikas K, et al. The perception of physicians on gender-specific differences in the diagnosis of COPD: results from a questionnaire-based survey. Int J Chron Obstruct Pulmon Dis. 2021;16:901–907. doi: 10.2147/COPD.S271505.
  • Morrow JD, Glass K, Cho MH, et al. Human lung DNA methylation quantitative trait loci colocalize with chronic obstructive pulmonary disease genome-wide association loci. Am J Respir Crit Care Med. 2018;197(10):1275–1284. doi: 10.1164/rccm.201707-1434OC.
  • Wang T, Wang W, Li W, et al. Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged chinese monozygotic twins. Respir Res. 2021;22(1):300. doi: 10.1186/s12931-021-01896-5.
  • Kang K, Peng X, Zhang X, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem. 2013;288(35):25414–25427. doi: 10.1074/jbc.M113.460287.
  • Barnes PJ. Transcription factors in airway diseases. Lab Invest. 2006;86(9):867–872. doi: 10.1038/labinvest.3700456.
  • Lee JU, Kim LK, Choi JM. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Front Immunol. 2018;9:2747. doi: 10.3389/fimmu.2018.02747.
  • Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–638. doi: 10.1038/nri.2016.90.
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi: 10.1016/j.jaci.2016.05.011.
  • Billington CK, Ojo OO, Penn RB, et al. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26(1):112–120. doi: 10.1016/j.pupt.2012.05.007.
  • Hsu CG, Fazal F, Rahman A, et al. Phosphodiesterase 10A is a key mediator of lung inflammation. J Immunol. 2021;206(12):3010–3020. doi: 10.4049/jimmunol.2001026.
  • Siuciak JA, McCarthy SA, Chapin DS, et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology. 2006;51(2):374–385. doi: 10.1016/j.neuropharm.2006.01.012.
  • Demenais F, Margaritte-Jeannin P, Barnes KC, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet. 2018;50(1):42–53. doi: 10.1038/s41588-017-0014-7.
  • Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–1221. doi: 10.1056/NEJMoa0906312.
  • Hayden LP, Cho MH, Raby BA, et al. Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Respir Res. 2018;19(1):209. doi: 10.1186/s12931-018-0890-0.
  • Veerasingam E, Gao Z, Beach J, et al. Sex-specific characteristics for the coexistence of asthma and COPD in the Canadian population: a cross-sectional analysis of CLSA data. J Asthma. 2022;0:1–22.
  • Mirabelli MC, Beavers SF, Flanders WD, et al. Reliability in reporting asthma history and age at asthma onset. J Asthma. 2014;51(9):956–963. doi: 10.3109/02770903.2014.930480.
  • Torén K, Murgia N, Olin AC, et al. Validity of physician-diagnosed COPD in relation to spirometric definitions of COPD in a general population aged 50– 64 years - the SCAPIS pilot study. Int J Chron Obstruct Pulmon Dis. 2017;12:2269–2275. doi: 10.2147/COPD.S136308.