178
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in the Applications of Mixed Matrix Membranes for Desulfurization of Transportation Fuels

, , , , , , , & ORCID Icon show all
Received 21 Jun 2023, Accepted 17 Feb 2024, Published online: 28 Feb 2024

References

  • Wang, Z.; Wang, Q.; Jia, C.; Bai, J. Thermal Evolution of Chemical Structure and Mechanism of Oil Sands Bitumen. Energy. 2022, 244, 123190. DOI: 10.1016/j.energy.2022.123190.
  • Li, X.; Wang, F.; Al-Razgan, M.; Awwad, E. M.; Abduvaxitovna, S. Z.; Li, Z.; Li, J. Race to Environmental Sustainability: Can Structural Change, Economic Expansion and Natural Resource Consumption Effect Environmental Sustainability? A Novel Dynamic ARDL Simulations Approach. Resour. Policy. 2023, 86, 104044. DOI: 10.1016/j.resourpol.2023.104044.
  • Ahmad, W.; Ahmad, I.; Ahmad, I.; Yaseen, M.; Muhammad, N.; Salman, M. Desulfurization and de-Ashing of Low-Rank Coal by Catalytic Oxidation Using Sn as Catalyst Loaded in Different Forms. Int. J. Coal Prep. Util. 2022, 42(8), 2260–2276. DOI: 10.1080/19392699.2020.1825078.
  • Velu, S.; Watanabe, S.; Ma, X.; Song, C. Regenerable Adsorbents for the Adsorptive Desulfurization of Transportation Fuels for Fuel Cell Applications. Chem. Soc., Fuel Chem. Div. Prepr. 2003, 48, 526–528.
  • Liu, L.; Tang, Y.; Liu, D. Investigation of Future Low-Carbon and Zero-Carbon Fuels for Marine Engines from the View of Thermal Efficiency. Energy. Rep. 2022, 8, 6150–6160. DOI: 10.1016/j.egyr.2022.04.058.
  • Dai, W.; Zhou, Y.; Wang, S.; Su, W.; Sun, Y.; Zhou, L. Desulfurization of Transportation Fuels Targeting at Removal of Thiophene/Benzothiophene. Fuel Process. Technol. 2008, 89(8), 749–755. DOI: 10.1016/j.fuproc.2008.01.002.
  • Ahmad, W.; Ahmad, I.; Ahmad, R.; Ullah, Z.; Ibrahim, M. Desulfurization of Lakhra Coal by Combined Leaching and Catalytic Oxidation Techniques. Int. J. Coal Prep. Util. 2022, 42(2), 124–140. DOI: 10.1080/19392699.2019.1583648.
  • Chen, Z.-D.; Gong, X.-Z.; Zhi, W.; Wang, Y.-G.; Zhang, S.; Xu, D.-P. Sulfur Removal from Ionic Liquid-Assisted Coal Water Slurry Electrolysis in KNO3 System. J. Fuel Chem. Technol. 2013, 41(8), 928–936. DOI: 10.1016/S1872-5813(13)60040-7.
  • Klein, J.; Van Afferden, M.; Pfeifer, F.; Schacht, S. Microbial desulfurization of coal and oil. Fuel Process. Technol. 1994, 40(2–3), 297–310. DOI: 10.1016/0378-3820(94)90152-X.
  • Sévignon, M.; Macaud, M.; Favre-Réguillon, A.; Schulz, J.; Rocault, M.; Faure, R.; Vrinat, M.; Lemaire, M. Ultra-deep desulfurization of transportation fuels via charge-transfer complexes under ambient conditions. Green. Chem. 2005, 7(6), 413–420. DOI: 10.1039/B502672E.
  • Song, C. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel. Catal. Today. 2003, 86(1–4), 211–263. DOI: 10.1016/S0920-5861(03)00412-7.
  • Fihri, A.; Mahfouz, R.; Shahrani, A.; Taie, I.; Alabedi, G. Pervaporative Desulfurization of Gasoline: A Review. Chem. Eng. Process. Process Intensif. 2016, 107, 94–105. DOI: 10.1016/j.cep.2016.06.006.
  • Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-Matrix Membranes. Angew. Chem. Int. Ed. 2017, 56(32), 9292–9310. DOI: 10.1002/anie.201701109.
  • Wang, K.; Li, N.; Yang, Y.; Ke, S.; Zhang, Z.; Dou, M.; Wang, F. Effect of Load-Cycling Amplitude on Performance Degradation for Proton Exchange Membrane Fuel Cell. Chin. Chem. Lett. 2021, 32(10), 3159–3163. DOI: 10.1016/j.cclet.2021.02.045.
  • Cheng, Y.; Ying, Y.; Japip, S.; Jiang, S. D.; Chung, T. S.; Zhang, S.; Zhao, D. Advanced Porous Materials in Mixed Matrix Membranes. Adv. Mater. 2018, 30(47), 1802401. DOI: 10.1002/adma.201802401.
  • Yaseen, M.; Farooq, M. U.; Ahmad, W.; Subhan, F. Fabrication of Rgo-CuO And/Or Ag2O Nanoparticles Incorporated Polyvinyl Acetate Based Mixed Matrix Membranes for the Removal of Cr6+ from Anti-Corrosive Paint Industrial Wastewater. J. Environ. Chem. Eng. 2021, 9(2), 105151. DOI: 10.1016/j.jece.2021.105151.
  • Robeson, L. M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Membr. Sci. 1991, 62(2), 165–185. DOI: 10.1016/0376-7388(91)80060-J.
  • Carreon, M. A.; Li, S.; Falconer, J. L.; Noble, R. D. Alumina-Supported SAPO-34 Membranes for CO2/CH4 Separation. J. Am. Chem. Soc. 2008, 130(16), 5412–5413. DOI: 10.1021/ja801294f.
  • Chung, T.; Kulprathipanja S, J. L. L. Y. Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation. Prog. Polym. Sci. 2007, 32(4), 483–507. DOI: 10.1016/j.progpolymsci.2007.01.008.
  • Robeson, L. M. The Upper Bound Revisited. J. Membr. Sci. 2008, 320(1–2), 390–400. DOI: 10.1016/j.memsci.2008.04.030.
  • Venna, S. R.; Carreon, M. A. Metal Organic Framework Membranes for Carbon Dioxide Separation. Chem. Eng. Sci. 2015, 124, 3–19. DOI: 10.1016/j.ces.2014.10.007.
  • Salman, M.; Shakir, M.; Yaseen, M. Recent Developments in Membrane Filtration for Wastewater Treatment. Industrial Wastewater Treatment, 2022, 1–25. DOI: 10.1007/978-3-030-98202-7_1.
  • Noble, R. D. Perspectives on Mixed Matrix Membranes. J. Membr. Sci. 2011, 378(1–2), 393–397. DOI: 10.1016/j.memsci.2011.05.031.
  • Vinh-Thang, H.; Kaliaguine, S. Predictive Models for Mixed-Matrix Membrane Performance: A Review. Chem. Rev. 2013, 113(7), 4980–5028. DOI: 10.1021/cr3003888.
  • Casado-Coterillo, C. Mixed matrix membranes. 2019, MDPI. 149. 2019, 9(11), 149. DOI: 10.3390/membranes9110149.
  • Salahshoori, I.; Seyfaee, A.; Babapoor, A. Recent Advances in Synthesis and Applications of Mixed Matrix Membranes. Synth. Sinter. 2021, 1(1), 1–27. DOI: 10.53063/synsint.2021.116.
  • Lin, L.; Wang, A.; Dong, M.; Zhang, Y.; He, B.; Li, H. Sulfur removal from fuel using zeolites/polyimide mixed matrix membrane adsorbents. J. Hazard. Mater. 2012, 203, 204–212. DOI: 10.1016/j.jhazmat.2011.12.015.
  • Chen, H.; Xu, C.; Zhao, F.; Geng, C.; Liu, Y.; Zhang, J.; Kang, Q.; Li, Z. Designing the Anti-Biofouling Surface of an Ultrafiltration Membrane with a Novel Zwitterionic Poly (Aryl Ether Oxadiazole) Containing Benzimidazole. Appl. Surf. Sci. 2023, 609, 155447. DOI: 10.1016/j.apsusc.2022.155447.
  • Han, X.; Sun, H.; Liu, L.; Wang, Y.; He, G.; Li, J. Improved Desulfurization Performance of Polydimethylsiloxane Membrane by Incorporating Metal Organic Framework CPO-27-Ni. Sep. Purif. Technol. 2019, 217, 86–94. DOI: 10.1016/j.seppur.2019.01.075.
  • Han, X.; Hu, T.; Wang, Y.; Chen, H.; Wang, Y.; Yao, R.; Ma, X.; Li, J.; Li, X. A Water-Based Mixing Process for Fabricating ZIF-8/PEG Mixed Matrix Membranes with Efficient Desulfurization Performance. Sep. Purif. Technol. 2019, 214, 61–66. DOI: 10.1016/j.seppur.2018.02.035.
  • Zhao, C.; Li, J.; Qi, R.; Chen, J.; Luan, Z. Pervaporation Separation of N-Heptane/sulfur Species Mixtures with Polydimethylsiloxane Membranes. Sep. Purif. Technol. 2008, 63(1), 220–225. DOI: 10.1016/j.seppur.2008.05.003.
  • Sun, H.; Magnuson, Z.; He, W.; Zhang, W.; Vardhan, H.; Han, X.; He, G.; Ma, S. PEG@ ZIF-8/PVDF Nanocomposite Membrane for Efficient Pervaporation Desulfurization via a Layer-By-Layer Technology. ACS Appl. Mater. Interfaces. 2020, 12(18), 20664–20671. DOI: 10.1021/acsami.0c02513.
  • Abdali, A.; Mahmoudian, M.; Eskandarabadi, S. M.; Nozad, E.; Enayati, M. Elimination of Dibenzothiophene from N-Hexane by Nano-Composite Membrane Containing Cu-MOF in a Pervaporation Process. J. Iran. Chem. Soc. 2021, 18(5), 1015–1026. DOI: 10.1007/s13738-020-02087-7.
  • Sha, S.; Zhang, X.; Wang, L.; Li, Y.; Lin, L.; Zhang, Y. Effect of Synthetic Conditions on the Morphology and Gasoline Desulfurization Performance of Microphase-Separated Membranes. Cellulose. 2018, 25(6), 3487–3497. DOI: 10.1007/s10570-018-1792-5.
  • Azizi Namaghi, H.; Pourafshari Chenar, M.; Haghighi Asl, A.; Esmaeili, M.; Pihlajamäki, A.; Kallioinen, M.; Mänttäri, M. Ultra-Desulfurization of Sulfur Recovery Unit Wastewater Using Thin Film Nanocomposite Membrane. Sep. Purif. Technol. 2019, 221, 211–225. DOI: 10.1016/j.seppur.2019.03.096.
  • Pulyalina, A. Y.; Tataurov, M.; Larkina, A.; Faykov, I.; Rostovtseva, V.; Vinogradova, L.; Polotskaya, G. Pervaporation Desulfurization of a Thiophene/n-Octane Mixture Using PPO Membranes Modified with Hybrid Star-Shaped Macromolecules. Membr. Membr. Technol. 2019, 1(4), 238–245. DOI: 10.1134/S2517751619040085.
  • Peng, P.; Lan, Y.; Zhang, Q.; Luo, J. Application of Graphene Structure/Polyurethane Membrane in Pervaporative Desulfurization. J. Appl. Polym. Sci. 2022, 139(3), 51514. DOI: 10.1002/app.51514.
  • Ghalehnooiy, M. R.; Marjani, A.; Ghadiri, M. Synthesis and Characterization of Polyurethane/Poly (Vinylpyridine) Composite Membranes for Desulfurization of Gasoline. R.S.C. Adv. 2015, 5(116), 95994–96001. DOI: 10.1039/C5RA13951A.
  • Hou, Y.; Xu, Y.; Li, H.; Li, Y.; Niu, Q. J. Polyvinyl Butyral/Modified SiO2 Nanoparticle Membrane for Gasoline Desulfurization by Pervaporation. Chem. Eng. Technol. 2019, 42(1), 65–72. DOI: 10.1002/ceat.201800327.
  • Esmaeili-Faraj, S.; Hassanzadeh, A.; Shakeriankhoo, F.; Hosseini, S.; Vaferi, B. Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: Experimental analysis and modeling by the response surface methodology. Chem. Eng. Process. Process Intensif. 2021, 164, 108396. DOI: 10.1016/j.cep.2021.108396.
  • Xin, Q.; Zhang, C.; Zhang, Y.; Liang, Q.; Zhang, L.; Wang, S.; Ye, H.; Ding, X.; Zhang, Y. Constructing superhydrophobic surface of PES/PES-SiO2 mixed matrix membrane contactors for efficient SO2 capture. Sep. Purif. Technol. 2021, 259, 118222. DOI: 10.1016/j.seppur.2020.118222.
  • Shi, Y.; Gao, C.; Xing, E.; Zhang, J.; Duan, F.; Zhao, H.; Xie, Y. Ni Nanoparticles Encapsulated within H-Type ZSM-5 Crystals for Upgrading Palmitic Acid to Diesel-Like Fuels. Chin. Chem. Lett. 2022, 33(2), 803–806. DOI: 10.1016/j.cclet.2021.06.086.
  • Qi, R.; Wang, Y.; Chen, J.; Li, J.; Zhu, S. Pervaporative Desulfurization of Model Gasoline with Ag2O-Filled PDMS Membranes. Sep. Purif. Technol. 2007, 57(1), 170–175. DOI: 10.1016/j.seppur.2007.04.001.
  • Xia, G.; Zheng, Y.; Sun, Z.; Xia, S.; Ni, Z.; Yao, J. Fabrication of ZnAl-LDH Mixed Metal-Oxide Composites for Photocatalytic Degradation of 4-Chlorophenol. Environ. Sci. Pollut. Res. 2022, 29(26), 39441–39450. DOI: 10.1007/s11356-022-18989-3.
  • Qi, R.; Wang, Y.; Chen, J.; Li, J.; Zhu, S. Removing Thiophenes from N-Octane Using PDMS–AgY Zeolite Mixed Matrix Membranes. J. Membr. Sci. 2007, 295(1–2), 114–120. DOI: 10.1016/j.memsci.2007.02.047.
  • Amaral, R.; Habert, A.; Borges, C. Activated carbon polyurethane membrane for a model fuel desulfurization by pervaporation. Mater. Lett. 2014, 137, 468–470. DOI: 10.1016/j.matlet.2014.09.072.
  • Soleimani, A.; Doroodmand, M. M. Carbon Nanotubes-Based Mixed Matrix Membranes in Separation Technology, in Carbon Composite Catalysts. Springer, 2022; pp. 171–221. doi: 10.1016/j.matlet.2014.09.072.
  • Li, W.; Pan, F.; Song, Y.; Wang, M.; Wang, H.; Walker, S.; Wu, H.; Jiang, Z. Construction of Molecule-Selective Mixed Matrix Membranes with Confined Mass Transfer Structure. Chin. J. Chem. Eng. 2017, 25(11), 1563–1580. DOI: 10.1016/j.cjche.2017.04.015.
  • Shi, W.; Han, X.; Bai, F.; Hua, C.; Cao, X. Enhanced Desulfurization Performance of Polyethylene Glycol Membrane by Incorporating Metal Organic Framework MOF-505. Sep. Purif. Technol. 2021, 272, 118924. DOI: 10.1016/j.seppur.2021.118924.
  • Song, Z.; Shao, X.; Wu, W.; Liu, Z.; Yang, M.; Liu, M.; Wang, H. Structures and Stabilities of Carbon Chain Clusters Influenced by Atomic Antimony. Molecules. 2023, 28(3), 1358. DOI: 10.3390/molecules28031358.
  • Monsalve-Bravo, G. M.; Bhatia, S. K. Modeling Permeation Through Mixed-Matrix Membranes: A Review. Processes. 2018, 6(9), 172. DOI: 10.3390/pr6090172.
  • Nasir, R.; Mukhtar, H.; Man, Z.; Mohshim, D. F. Material Advancements in Fabrication of Mixed‐Matrix Membranes. Chem. Eng. Technol. 2013, 36(5), 717–727. DOI: 10.1002/ceat.201200734.
  • Geleta, T. A.; Maggay, I. V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes. 2023, 13(1), 58. DOI: 10.3390/membranes13010058.
  • Abdali, A.; Mahmoudian, M.; Nozad, E. Desulfurization of a Model Fuel using Pervaporation Membranes Containing Zn-MOFs. J. Polym. Res. 2021, 28(7), 1–14. DOI: 10.1007/s10965-021-02472-7.
  • Smith, R.; Inomata, H.; Peters, C. Chapter 4 - Historical Background and Applications. In Supercritical Fluid Science and Technology, Smith, R., Inomata, H. Peters, C.; Eds. Elsevier, 2013; pp. 175–273. DOI: 10.1016/B978-0-444-52215-3.00004-0.
  • Zhang, Y.; Song, J.; Pan, F.; Li, Y.; Zhao, J.; Wang, S.; Huang, Y.; Li, Y.; Jiang, Z. Constructing High-Efficiency Facilitated Transport Pathways via Embedding Heterostructured Ag+@mof/GO Laminates into Membranes for Pervaporative Desulfurization. Sep. Purif. Technol. 2020, 245, 116858. DOI: 10.1016/j.seppur.2020.116858.
  • Zhu, Y.; Wang, K.; Pan, Z.; Dai, Y.; Rong, J.; Zhang, T.; Xue, S.; Yang, D.; Qiu, F. Electrostatic Spray Deposition of Boronate Affinity Imprinted Membrane to Be Used as Adsorption Separation Material. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130699. DOI: 10.1016/j.colsurfa.2022.130699.
  • Tang, T.; Yang, F.; Xie, M.; Xue, L.; Jiang, Z.; Xie, Z.; Wang, K.; Li, Z.; Geng, L.; Hu, T., et al. Highly Efficient Separation and Enrichment of Hafnium from Zirconium Oxychloride Solutions by Advanced Ion-Imprinted Membrane Separation Technology. J. Membr. Sci. 2023, 668, 121237. DOI: 10.1016/j.memsci.2022.121237.
  • Qu, Y.; Qin, L.; Yang, Y.; Liu, X. Porous Carbon Nanosphere-Based Imprinted Composite Membrane for Selective and Effective Separation of Dibenzothiophene. Sep. Purif. Technol. 2021, 265, 118530. DOI: 10.1016/j.seppur.2021.118530.
  • Tang, X.; Yan, X. Dip-Coating for Fibrous Materials: Mechanism, Methods and Applications. J. Sol-Gel Sci. Technol. 2017, 81(2), 378–404. DOI: 10.1007/s10965-021-02472-7.
  • Xu, R.; Zou, L.; Lin, P.; Zhang, Q.; Zhong, J. Pervaporative desulfurization of model gasoline using PDMS/BTESE-derived organosilica hybrid membranes. Fuel Process. Technol. 2016, 154, 188–196. DOI: 10.1016/j.fuproc.2016.08.031.
  • Lu, F. W.; Kong, Y.; Lv, H. L.; Ding, J.; Yang, J. R. The Pervaporation Performance of Polyimide-Block-Polyethylene Glycol Membranes for Gasoline Desulphurization: Effect of PEG Groups. in Advanced Materials Research. 2011. Trans Tech Publ. 2010, 150-151, 317–320. DOI: 10.4028/www.scientific.net/AMR.150-151.317.
  • Yang, Z.; Zhang, W.; Li, J.; Chen, J. Polyphosphazene membrane for desulfurization: Selecting poly[bis(trifluoroethoxy) phosphazene] for pervaporative removal of thiophene. Sep. Purif. Technol. 2012, 93, 15–24. DOI: 10.1016/j.seppur.2012.03.015.
  • Lu, F.; Kong, Y.; Lv, H.; Yang, J. The Removal of Thiophene from N-Heptane/thiophene Mixtures by Polyethylene Glycol-Block-Polyacrylonitrile Membranes. Pet. Sci. Technol. 2012, 30(12), 1232–1238. DOI: 10.1080/10916466.2010.503213.
  • Liu, K.; Fang, C.-J.; Li, Z.-Q.; Young, M. Separation of Thiophene/n-Heptane Mixtures Using PEBAX/PVDF-Composited Membranes via Pervaporation. J. Membr. Sci. 2014, 451, 24–31. DOI: 10.1016/j.memsci.2013.09.045.
  • Rychlewska, K.; Konieczny, K. Pervaporative Desulfurization of Gasoline—Separation of Hydrocarbon/Thiophene Mixtures Using Polydimethylsiloxane (PDMS)-Based Membranes. Desalin. Water. Treat. 2016, 57(3), 1247–1254. DOI: 10.1080/19443994.2014.988412.
  • Lin, L.; Dong, M.; Liu, C.; Sun, H.; Zhang, L.; Zhang, C.; Deng, P.; Li, Y. Building Movable Bridges in Membrane Matrix by Polyrotaxane Crosslinking for Sulfur Removal. Mater. Lett. 2014, 126, 59–62. DOI: 10.1016/j.matlet.2014.04.036.
  • Rychlewska, K.; Kujawski, W.; Konieczny, K. Pervaporative Removal of Organosulfur Compounds (OSCs) from Gasoline Using PEBA and PDMS Based Commercial Hydrophobic Membranes. Chem. Eng. J. 2017, 309, 435–444. DOI: 10.1016/j.cej.2016.10.090.
  • Rychlewska, K.; Kujawski, W.; Konieczny, K. Pervaporative Performance of PEBA and PDMS Based Commercial Membranes in Thiophene Removal from Its Binary Mixtures with Hydrocarbons. Fuel Process. Technol. 2017, 165, 9–18. DOI: 10.1016/j.fuproc.2017.05.004.
  • Baheri, B.; Mohammadi, T. Sorption, Diffusion and Pervaporation Study of Thiophene/n-Heptane Mixture Through Self-Support PU/PEG Blend Membrane. Sep. Purif. Technol. 2017, 185, 112–119. DOI: 10.1016/j.seppur.2017.05.026.
  • Farsi, M.; Honarvar, B.; Heydarinasab, A.; Arjmand, M. Experimental Survey of Temperature, Time and Cross-Linking Agent Effects on Polydimethylsiloxane Composite Membranes Performances in Sulfur Removal. Int. J. Ind. Chem. 2018, 9(2), 177–183. DOI: 10.1007/s40090-018-0148-1.
  • Hou, Y.; Li, H.; Xu, Y.; Niu, Q.; Wu, W. Influence of Polyethylene Glycol on the Deep Desulfurization of Catalytic Cracking Gasoline by Polyurethane Membranes via Pervaporation. Energy. Fuels. 2018, 32(2), 2089–2094. DOI: 10.1021/acs.energyfuels.7b03654.
  • Amaral, R. A.; Habert, A. C.; Borges, C. P. Activated carbon polyurethane membrane for a model fuel desulfurization by pervaporation. Mater. Lett. 2014, 137, 468–470. DOI: 10.1016/j.matlet.2014.09.072.
  • Amaral, R. A.; Borges, C. P.; Habert, A. C.; Mermier, N. R. D. Dual‐Layer Hollow Fibers for Sulfur Removal from Fuels. Chem. Eng. Technol. 2016, 39(6), 1171–1176. DOI: 10.1002/ceat.201500272.
  • Yang, D.; Yang, S.; Jiang, Z.; Yu, S.; Zhang, J.; Pan, F.; Cao, X.; Wang, B.; Yang, J. Polydimethyl Siloxane–Graphene Nanosheets Hybrid Membranes with Enhanced Pervaporative Desulfurization Performance. J. Membr. Sci. 2015, 487, 152–161. DOI: 10.1016/j.memsci.2015.03.068.
  • Yu, S.; Jiang, Z.; Yang, S.; Ding, H.; Zhou, B.; Gu, K.; Yang, D.; Pan, F.; Wang, S.; Cao, X. Highly Swelling Resistant Membranes for Model Gasoline Desulfurization. J. Membr. Sci. 2016, 514, 440–449. DOI: 10.1016/j.memsci.2016.05.015.
  • Zhang, Q. G.; Fan, B. C.; Liu, Q. L.; Zhu, A. M.; Shi, F. F. A novel poly(dimethyl siloxane)/poly(oligosilsesquioxanes) composite membrane for pervaporation desulfurization. J. Membr. Sci. 2011, 366(1), 335–341. DOI: 10.1016/j.memsci.2010.10.022.
  • Li, B.; Yu, S.; Jiang, Z.; Liu, W.; Cao, R.; Wu, H. Efficient desulfurization by polymer–inorganic nanocomposite membranes fabricated in reverse microemulsion. J. Hazard. Mater. 2012, 211-212, 296–303. DOI: 10.1016/j.jhazmat.2011.10.047.
  • Li, B.; Liu, W.; Wu, H.; Yu, S.; Cao, R.; Jiang, Z. Desulfurization of Model Gasoline by Bioinspired Oleophilic Nanocomposite Membranes. J. Membr. Sci. 2012, 415-416, 278–287. DOI: 10.1016/j.memsci.2012.05.010.
  • Cao, R.; Zhang, X.; Wu, H.; Wang, J.; Liu, X.; Jiang, Z. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core–shell microspheres. J. Hazard. Mater. 2011, 187(1), 324–332. DOI: 10.1016/j.jhazmat.2011.01.031.
  • Liu, G.; Zhou, T.; Liu, W.; Hu, S.; Pan, F.; Wu, H.; Jiang, Z.; Wang, B.; Yang, J.; Cao, X. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. J. Mater. Chem. A. 2014, 2(32), 12907–12917. DOI: 10.1039/C4TA01778A.
  • Konietzny, R.; Koschine, T.; Rätzke, K.; Staudt, C. POSS-Hybrid Membranes for the Removal of Sulfur Aromatics by Pervaporation. Sep. Purif. Technol. 2014, 123, 175–182. DOI: 10.1016/j.seppur.2013.12.024.
  • Yang, Z.; Zhang, W.; Wang, T.; Li, J. Improved Thiophene Solution Selectivity by Cu2+, Pb2+ and Mn2+ Ions in Pervaporative Poly [Bis (P-Methyl Phenyl) Phosphazene] Desulfurization Membrane. J. Membr. Sci. 2014, 454, 463–469. DOI: 10.1016/j.memsci.2013.12.036.
  • Shariatinia, Z.; Jalali, A. M.; Taromi, F. A. Molecular dynamics simulations on desulfurization of n-octane/thiophene mixture using silica filled polydimethylsiloxane nanocomposite membranes. Modell. Simul. Mater. Sci. Eng. 2016, 24(3), 035002. DOI: 10.1088/0965-0393/24/3/035002.
  • Jalali, A. M.; Shariatinia, Z.; Taromi, F. A. Desulfurization efficiency of polydimethylsiloxane/silica nanoparticle nanocomposite membranes: MD simulations. Comput. Mater. Sci. 2017, 139, 115–124. DOI: 10.1016/j.commatsci.2017.07.033.
  • Hou, Y.; Liu, M.; Huang, Y.; Zhao, L.; Wang, J.; Cheng, Q.; Niu, Q. Gasoline desulfurization by a TiO2‐filled ethyl cellulose pervaporation membrane. J. Appl. Polym. Sci. 2017, 134(6). DOI: 10.1002/app.43409.
  • Pan, F.; Ding, H.; Li, W.; Song, Y.; Yang, H.; Wu, H.; Jiang, Z.; Wang, B.; Cao, X. Constructing Facilitated Transport Pathway in Hybrid Membranes by Incorporating MoS2 Nanosheets. J. Membr. Sci. 2018, 545, 29–37. DOI: 10.1016/j.memsci.2017.09.054.
  • Yuan, H.; Liu, X.; Zhang, S.; Lu, J. Pervaporative Desulfurization of N-Heptane/Thiophene Model Gasoline for Modified Polyether-Block-Amide (Pebax) Membrane. Chem. Eng. Process. Process Intensif. 2019, 144, 107632. DOI: 10.1016/j.cep.2019.107632.
  • Mujahid, A.; Maryam, A.; Afzal, A.; Zafar Bajwa, S.; Hussain, T.; Imran Din, M.; Latif, U.; Irshad, M. Molecularly Imprinted Poly(methyl Methacrylate)-Nickel Sulfide Hybrid Membranes for Adsorptive Desulfurization of Dibenzothiophene. Sep. Purif. Technol. 2020, 237, 116453. DOI: 10.1016/j.seppur.2019.116453.
  • Zhang, Y.; Song, J.; Quispe Mayta, J.; Pan, F.; Gao, X.; Li, M.; Song, Y.; Wang, M.; Cao, X.; Jiang, Z. Enhanced Desulfurization Performance of Hybrid Membranes Using Embedded Hierarchical Porous SBA-15. Front. Chem. Sci. Eng. 2020, 14(4), 661–672. DOI: 10.1007/s11705-019-1830-3.
  • Esmaeili-Faraj, S. H.; Hassanzadeh, A.; Shakeriankhoo, F.; Hosseini, S.; Vaferi, B. Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: Experimental analysis and modeling by the response surface methodology. Chem. Eng. Process. Process Intensif. 2021, 164, 108396. DOI: 10.1016/j.cep.2021.108396.
  • Xia, Y.; Han, G. L.; Zhang, Q. G.; Gong, Y.; Broadwell, I.; Liu, Q. L. CuO‐filled aminomethylated polysulfone hybrid membranes for deep desulfurization. J. Appl. Polym. Sci. 2013, 130(5), 3718–3725. DOI: 10.1002/app.39647.
  • Gui, Z.; Leng, X.; Wang, M.; Hou, Y. Surface Engineering of a Pervaporation Desulfurization Membrane with Crack Structures by the Self‐Condensation of Silane Coupling Agent. J. Appl. Polym. Sci. 2022, 139(17), 52020. DOI: 10.1002/app.52020.
  • Leng, X.; Wang, M.; Hou, Y. Fabrication of a High-Performance Polyurethane Pervaporation Membrane via Surface Grafting of Silane Coupling Agent. J. Polym. Res. 2022, 29(5), 156. DOI: 10.1007/s10965-022-02970-2.
  • Zhan, X.; Zhao, X.; Ge, R.; Gao, Z.; Wang, L.; Sun, X.; Li, J. Constructing High-Efficiency Transport Pathways via Incorporating DP-POSS into PEG Membranes for Pervaporative Desulfurization. Sep. Purif. Technol. 2022, 299, 121754. DOI: 10.1016/j.seppur.2022.121754.
  • Hou, Z.; Peng, P.; Lan, Y.; Wu, Z.; Wang, J. Effect of MoS2 Yolk-Shell Nanostructure on the Thiophene Separation Performance of PEG Membrane. Adv. Polym. Technol. 2022, 2022, 1–13. DOI: 10.1155/2022/5780884.
  • Le, Q.; Xiang, Y.; Liu, Z.; Cheng, Z. High Mechanical Performance Submicron-Sized Cu2O-Derived Necklace-Shaped PAN Nanofiber Composite Membrane Towards Adsorption Desulfurization Application. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129369. DOI: 10.1016/j.colsurfa.2022.129369.
  • Le, Q.; Cheng, Z. Template-Synthesized Nano-Ag2O@ HNTs-Constructed Hierarchical Porous-Structured PAN Composite Nanofiber Membrane Towards Selective Adsorption Desulfurization. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130242. DOI: 10.1016/j.colsurfa.2022.130242.
  • Klaysom, C.; Shahid, S. Zeolite-Based Mixed Matrix Membranes for Hazardous Gas Removal. Advanced Nanomaterials for Membrane Synthesis and Its Applications. 2019, 127–157. 10.1016/B978-0-12-814503-6.00006-9.
  • Derbe, T.; Temesgen, S.; Bitew, M. A Short Review on Synthesis, Characterization, and Applications of Zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 1–17. DOI: 10.1155/2021/6637898.
  • Narayanan, S.; Tamizhdurai, P.; Mangesh, V.; Ragupathi, C.; Santhana Krishnan, P.; Ramesh, A. Recent Advances in the Synthesis and Applications of Mordenite Zeolite–Review. R.S.C. Adv. 2021, 11(1), 250–267. DOI: 10.1039/D0RA09434J.
  • Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A. A.; Pérez, A.; Rana, M. S. Recent Progress of Fillers in Mixed Matrix Membranes for CO2 Separation: A Review. Sep. Purif. Technol. 2017, 188, 431–450. DOI: 10.1016/j.seppur.2017.07.051.
  • Li, B.; Xu, D.; Jiang, Z.; Zhang, X.; Liu, W.; Dong, X. Pervaporation Performance of PDMS-Ni2+y Zeolite Hybrid Membranes in the Desulfurization of Gasoline. J. Membr. Sci. 2008, 322(2), 293–301. DOI: 10.1016/j.memsci.2008.06.015.
  • Wang, T.; Zhao, X. L.; Zhang, Y. Z.; Li, H. Preparation of Inorganic/Organic Hybrid Membrane Adsorbents for Gasoline Desulfurization: Control of the Membrane Structure. Adv. Mater. Res. 2009, 79-82, 1935–1938. DOI: 10.4028/www.scientific.net/AMR.79-82.1935.
  • Lin, L.; Zhang, Y.; Li, H. Pervaporation and Sorption Behavior of Zeolite-Filled Polyethylene Glycol Hybrid Membranes for the Removal of Thiophene Species. J. Colloid. Interface. Sci. 2010, 350(1), 355–360. DOI: 10.1016/j.jcis.2010.06.031.
  • Lin, L.; Zhang, C.; Liu, C.; Dong, M.; Zhang, L.; Deng, P.; Sun, H.; Huang, H.; Liu, H.; Zhang, Y., et al. Y Type Zeolites/PI Membranes for Sulfur-Free Hydrogen Source and for Fuel Cell Applications. Int. J. Hydrogen. Energy. 2014, 39(9), 4704–4709.
  • Lin, L.; Liu, C.; Zhang, L.; Dong, M.; Cao, X.; Huang, H.; Liu, H.; Zhang, Y. Hollow Fiber Membranes with Polyimide Matrix for Sulfur-Free Hydrogen Source. Int. J. Hydrogen. Energy. 2014, 39(36), 21053–21059. DOI: 10.1016/j.ijhydene.2014.10.092.
  • Lin, R.; Hernandez, B. V.; Ge, L.; Zhu, Z. Metal Organic Framework Based Mixed Matrix Membranes: An Overview on Filler/Polymer Interfaces. J. Mater. Chem. A. 2018, 6(2), 293–312. DOI: 10.1039/C7TA07294E.
  • Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal Organic Framework Based Mixed Matrix Membranes: An Increasingly Important Field of Research with a Large Application Potential. Microporous. Mesoporous. Mater. 2013, 166, 67–78. DOI: 10.1016/j.micromeso.2012.03.012.
  • Erucar, I.; Yilmaz, G.; Keskin, S. Recent Advances in Metal–Organic Framework‐Based Mixed Matrix Membranes. Chem. Asian. J. 2013, 8(8), 1692–1704. DOI: 10.1002/asia.201300084.
  • Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed‐matrix membranes. Angew. Chem. Int. Ed. 2017, 56(32), 9292–9310. DOI: 10.1002/anie.201701109.
  • Yu, S.; Pan, F.; Yang, S.; Ding, H.; Jiang, Z.; Wang, B.; Li, Z.; Cao, X. Enhanced Pervaporation Performance of MIL-101 (Cr) Filled Polysiloxane Hybrid Membranes in Desulfurization of Model Gasoline. Chem. Eng. Sci. 2015, 135, 479–488. DOI: 10.1016/j.ces.2014.11.058.
  • Yu, S.; Jiang, Z.; Li, W.; Mayta, J. Q.; Ding, H.; Song, Y.; Li, Z.; Dong, Z.; Pan, F.; Wang, B., et al. Elevated Performance of Hybrid Membranes by Incorporating Metal Organic Framework CuBtc for Pervaporative Desulfurization of Gasoline. Chem. Eng. Process. Process Intensif. 2018, 123, 12–19. DOI: 10.1016/j.cep.2017.11.001.
  • Zhang, Y.; Jiang, Z.; Song, J.; Song, J.; Pan, F.; Zhang, P.; Cao, X. Elevated Pervaporative Desulfurization Performance of Pebax-Ag+@ MOFs Hybrid Membranes by Integrating Multiple Transport Mechanisms. Ind. Eng. Chem. Res. 2019, 58(36), 16911–16921. DOI: 10.1021/acs.iecr.9b03064.
  • Cai, C.; Fan, X.; Han, X.; Li, J.; Vardhan, H. Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBtc. Polymers. 2020, 12(2), 414. DOI: 10.3390/polym12020414.
  • Sun, H.; Magnuson, Z.; He, W.; Zhang, W.; Vardhan, H.; Han, X.; He, G.; Ma, S. Peg@ZIF-8/PVDF Nanocomposite Membrane for Efficient Pervaporation Desulfurization via a Layer-By-Layer Technology. ACS Appl. Mater. Interfaces. 2020, 12(18), 20664–20671. DOI: 10.1021/acsami.0c02513.
  • Wu, F.; Cao, Y.; Liu, H.; Zhang, X. High-Performance UiO-66-NH2 Tubular Membranes by Zirconia-Induced Synthesis for Desulfurization of Model Gasoline via Pervaporation. J. Membr. Sci. 2018, 556, 54–65. DOI: 10.1016/j.memsci.2018.03.090.
  • Song, Y.; Yang, D.; Yu, S.; Teng, X.; Chang, Z.; Pan, F.; Bu, X.; Jiang, Z.; Wang, B.; Wang, S., et al. Hybrid Membranes with Cu(ii) Loaded Metal Organic Frameworks for Enhanced Desulfurization Performance. Sep. Purif. Technol. 2019, 210, 258–267. DOI: 10.1016/j.seppur.2018.08.018.
  • Zhan, X.; Ge, R.; Yao, S.; Lu, J.; Sun, X.; Li, J. Enhanced Pervaporation Performance of PEG Membranes with Synergistic Effect of Cross-Linked PEG and Porous MOF-508a. Sep. Purif. Technol. 2023, 304, 122347. DOI: 10.1016/j.seppur.2022.122347.
  • Zhan, X.; Gao, K.; Jia, Y.; Deng, W.; Liu, N.; Guo, X.; Li, H.; Li, J. Enhanced Desulfurization Performance of ZIF− 8/PEG MMMs: Effect of ZIF− 8 Particle Size. Membranes. 2023, 13(5), 515. DOI: 10.3390/membranes13050515.
  • Le, Q.; Cheng, Z. Microwave-Assisted Rapid Growth of Corncob-Like Nano-Ag2O/ZIF-8 on PAN Electrospinning Nanofibers Enabled Highly Efficient Selective Adsorption Desulfurization. Appl. Surf. Sci. 2023, 623, 157109. DOI: 10.1016/j.apsusc.2023.157109.
  • Le, Q.; Liu, Z.; Cheng, Z. Robust Mechanical-Performance Core-Shell Nanostructured HNTs/PAN-Supported Cu (I)/UIO-66 Composite Nanofibers Towards Selective Adsorption Removal of Benzothiophene. Fuel Process. Technol. 2023, 249, 107858. DOI: 10.1016/j.fuproc.2023.107858.
  • Zhao, Z.; Han, Q.; He, W.; Han, X. Preparation of ZIF-8@ PEBAX/PVDF Nanocomposite Membrane by the Combination of Self-Assembly and in-Situ Growth for Removing Thiophene from the Model Gasoline. Chin. J. Chem. Eng. 2023, 64, 177–187. DOI: 10.1016/j.cjche.2023.06.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.