71
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Molecularly Imprinted Polymers: A New Solution for Controlling Ethyl Carbamate in Fermented Alcoholic Beverages

, &
Received 09 Feb 2023, Accepted 01 Apr 2024, Published online: 08 Apr 2024

References

  • Jiao, Z. H.; Dong, Y. C.; Chen, Q. H. Ethyl Carbamate in Fermented Beverages: Presence, Analytical Chemistry, Formation Mechanism, and Mitigation Proposals. Compr. Rev. Food Sci. F. 2014, 13(4), 611–626. DOI: 10.1111/1541-4337.12084.
  • Zhao, X. R.; Du, G. C.; Zou, H. J.; Fu, J. W.; Zhou, J. W.; Chen, J. Progress in Preventing the Accumulation of Ethyl Carbamate in Alcoholic Beverages. Trends Food Sci. Tech. 2013, 32(2), 97–107. DOI: 10.1016/j.tifs.2013.05.009.
  • Wackerlig, J.; Schirhagl, R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances Toward Industrial Use: A Review. Anal. Chem. 2016, 88(1), 250–261. DOI: 10.1021/acs.analchem.5b03804.
  • Ahmad, O. S.; Bedwell, T. S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends. Bio. technol. 2019, 37(3), 294–309. DOI: 10.1016/j.tibtech.2018.08.009.
  • Melo Abreu, S.; Alves, A.; Oliveira, B.; Herbert, P. Determination of Ethyl Carbamate in Alcoholic Beverages: An Interlaboratory Study to Compare HPLC-FLD with GC-MS Methods. Anal. Bioanal. Chem. 2005, 382(2), 498–503. DOI: 10.1007/s00216-005-3061-3.
  • Abt, E.; Incorvati, V.; Robin, L. P.; Redan, B. W. Occurrence of Ethyl Carbamate in Foods and Beverages: Review of the Formation Mechanisms, Advances in Analytical Methods, and Mitigation Strategies. J. Food Protect. 2021, 84(12), 2195–2212. DOI: 10.4315/JFP-21-219.
  • World Health Organization, G. Safety Evaluation of Certain Contaminants in Food. Prepared by the Sixty-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FAO. Food Nutr. Pap. 2006, 82, 1–778.
  • Ayerdurai, V.; Cieplak, M.; Kutner, W. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Food Contaminants Determination. TrAC-Trend. Anal. Chem. 2023, 158, 116830. DOI: 10.1016/j.trac.2022.116830.
  • BelBruno, J. J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119(1), 94–119. DOI: 10.1021/acs.chemrev.8b00171.
  • Ben Moussa, F. Molecularly Imprinted Polymers Meet Electrochemical Cancer Chemosensors: A Critical Review from a Clinical and Economic Perspective. Microchem. J. 2023, 191, 108838. DOI: 10.1016/j.microc.2023.108838.
  • Chi, H.; Liu, G. Q. Carbon Nanomaterial-Based Molecularly Imprinted Polymer Sensors for Detection of Hazardous Substances in Food: Recent Progress and Future Trends. Food Chem. 2023, 420, 136100. DOI: 10.1016/j.foodchem.2023.136100.
  • Haupt, K.; Rangel, P. X. M.; Bui, B. T. S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120(17), 9554–9582. DOI: 10.1021/acs.chemrev.0c00428.
  • Janczura, M.; Lulinski, P.; Sobiech, M. Imprinting Technology for Effective Sorbent Fabrication: Current State-Of-Art and Future Prospects. Materials. 2021, 14 (8), 1850. DOI: 10.3390/ma14081850.
  • Liu, G. Y.; Huang, X. D.; Li, L. Y.; Xu, X. M.; Zhang, Y. G.; Lv, J.; Xu, D. H. Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis. Nanomaterials-Basel. 2019, 9 (7), 1030. DOI: 10.3390/nano9071030.
  • Wang, L.; Pagett, M.; Zhang, W. Molecularly Imprinted Polymer (MIP) Based Electrochemical Sensors and Their Recent Advances in Health Applications. Sens. And Actuators. Reports. 2023, 5, 100153. DOI: 10.1016/j.snr.2023.100153.
  • Zhong, C. J.; Yang, B.; Jiang, X. X.; Li, J. P. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit. Rev. Anal. Chem. 2018, 48(1), 15–32. DOI: 10.1080/10408347.2017.1360762.
  • Zhang, H. Q. Molecularly Imprinted Nanoparticles for Biomedical Applications. Adv. Mater. 2020, 32(3). DOI: 10.1002/adma.201806328.
  • Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A. M.; Piletsky, S. Molecularly Imprinted Polymers for Cell Recognition. Trends. Bio.technol. 2020, 38(4), 368–387. DOI: 10.1016/j.tibtech.2019.10.002.
  • Crapnell, R. D.; Hudson, A.; Foster, C. W.; Eersels, K.; van Grinsven, B.; Cleij, T. J.; Banks, C. E.; Peeters, M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. Sensors. 2019, 19(5). DOI: 10.3390/s19051204.
  • Dong, C. Y.; Shi, H. X.; Han, Y. R.; Yang, Y. Y.; Wang, R. X.; Men, J. Y. Molecularly Imprinted Polymers by the Surface Imprinting Technique. Eur. Polym. J. 2021, 145. DOI: 10.1016/j.eurpolymj.2020.110231.
  • Chen, L. X.; Wang, X. Y.; Lu, W. H.; Wu, X. Q.; Li, J. H. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45(8), 2137–2211. DOI: 10.1039/c6cs00061d.
  • Wu, P. G.; Cai, C. G.; Shen, X. H.; Wang, L. Y.; Zhang, J.; Tan, Y.; Jiang, W.; Pan, X. D. Formation of Ethyl Carbamate and Changes During Fermentation and Storage of Yellow Rice Wine. Food Chem. 2014, 152, 108–112. DOI: 10.1016/j.foodchem.2013.11.135.
  • Yang, Y. Q.; Kang, Z.; Zhou, J. L.; Chen, J.; Du, G. C. High-Level Expression and Characterization of Recombinant Acid Urease for Enzymatic Degradation of Urea in Rice Wine. Appl. Microbiol. Biot. 2015, 99(1), 301–308. DOI: 10.1007/s00253-014-5916-z.
  • Xia, Q.; Niu, M. C.; Wu, C. D.; Zhou, R. Q. Formation of Ethyl Carbamate in Goji Wines: Effect of Goji Fruit Composition. Food Sci. Biotechnol. 2016, 25(3), 921–927. DOI: 10.1007/s10068-016-0151-2.
  • Liu, S. Q.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J. Citrulline Production and Ethyl Carbamate (Urethane) Precursor Formation from Arginine Degradation by Wine Lactic Acid Bacteria Leuconostoc Oenos and Lactobacillus Buchneri. Am. J. Enol. Viticult. 1994, 45(2), 235–242. DOI: 10.5344/ajev.1994.45.2.235.
  • Mira de Orduna, R.; Liu, S. Q.; Patchett, M. L.; Pilone, G. J. Ethyl Carbamate Precursor Citrulline Formation from Arginine Degradation by Malolactic Wine Lactic Acid Bacteria. FEMS microbiol. lett. 2000, 183(1), 31–35. DOI: 10.1016/S0378-1097(99)00624-2.
  • Azevedo, Z.; Couto, J. A.; Hogg, T. Citrulline As the Main Precursor of Ethyl Carbamate in Model Fortified Wines Inoculated with Lactobacillus Hilgardii: A Marker of the Levels in a Spoiled Fortified Wine. Lett. Appl. Microbiol. 2002, 34(1), 32–36. DOI: 10.1046/j.1472-765x.2002.01045.x.
  • Uthurry, C. A.; Lepe, J. A. S.; Lombardero, J.; Del Hierro, J. R. G. Ethyl Carbamate Production by Selected Yeasts and Lactic Acid Bacteria in Red Wine. Food Chem. 2006, 94(2), 262–270. DOI: 10.1016/j.foodchem.2004.11.017.
  • Mackenzie, W. M.; Clyne, A. H.; Macdonald, L. S. Ethyl Carbamate Formation in Grain Based Spirits. II. the Identification and Determination of Cyanide Related Species Involved in Ethyl Carbamate Formation in Scotch Grain Whisky. J. I Brewing. 1990, 96(4), 223–232. DOI: 10.1002/j.2050-0416.1990.tb01031.x.
  • Ding, X. F.; Huang, J.; Wu, C. D.; Zhou, R. Q. Effects of Different Distillation Patterns on Main Compounds of Chinese Luzhou-Flavour Raw Liquors. J. I Brewing. 2017, 123(3), 442–451. DOI: 10.1002/jib.422.
  • Jung, S.; Kim, S.; Kim, I.; Chung, M. S.; Moon, B.; Shin, S.; Lee, J. Risk Assessment of Ethyl Carbamate in Alcoholic Beverages in Korea Using the Margin of Exposure Approach and Cancer Risk Assessment. Food Control. 2021, 124, 107867. DOI: 10.1016/j.foodcont.2021.107867.
  • Wang, C. A.; Wang, M.; Zhang, M. P. Ethyl Carbamate in Chinese Liquor (Baijiu): Presence, Analysis, Formation, and Control. Appl. Microbiol. Biot. 2021, 105(11), 4383–4395. DOI: 10.1007/s00253-021-11348-1.
  • Zhou, K.; Patrignani, F.; Sun, Y. M.; Lanciotti, R.; Xu, Z. L. Inhibition of Ethyl Carbamate Accumulation in Soy Sauce by Adding Quercetin and Ornithine During Thermal Process. Food Chem. 2021, 343, 128528. DOI: 10.1016/j.foodchem.2020.128528.
  • Fang, F.; Qiu, Y. Y.; Du, G. C.; Chen, J. Evaluation of Ethyl Carbamate Formation in Luzhou-Flavor Spirit During Distillation and Storage Processes. Food Bio. Sci. 2018, 23, 137–141. DOI: 10.1016/j.fbio.2018.02.007.
  • Gowd, V.; Su, H. M.; Karlovsky, P.; Chen, W. Ethyl Carbamate: An Emerging Food and Environmental Toxicant. Food Chem. 2018, 248, 312–321. DOI: 10.1016/j.foodchem.2017.12.072.
  • Wu, P. G.; Pan, X. D.; Wang, L. Y.; Shen, X. H.; Yang, D. J. A Survey of Ethyl Carbamate in Fermented Foods and Beverages from Zhejiang, China. Food Control. 2012, 23(1), 286–288. DOI: 10.1016/j.foodcont.2011.07.014.
  • Dahabieh, M. S.; Husnik, J. I.; van Vuuren, H. J. J. Functional Enhancement of Sake Yeast Strains to Minimize the Production of Ethyl Carbamate in Sake Wine. J. Appl. Microbiol. 2010, 109(3), 963–973. DOI: 10.1111/j.1365-2672.2010.04723.x.
  • Hasnip, S.; Caputi, A.; Crews, C.; Brereton, P. Effects of Storage Time and Temperature on the Concentration of Ethyl Carbamate and Its Precursors in Wine. Food Addit. Contam. A. 2004, 21(12), 1155–1161. DOI: 10.1080/02652030400019851.
  • Cerreti, M.; Fidaleo, M.; Benucci, I.; Liburdi, K.; Tamborra, P.; Moresi, M. Assessing the Potential Content of Ethyl Carbamate in White, Red, and Rose Wines as a Key Factor for Pursuing Urea Degradation by Purified Acid Urease. J. Food Sci. 2016, 81(7), C1603–C1612. DOI: 10.1111/1750-3841.13344.
  • Magasanik, B.; Kaiser, C. A. Nitrogen Regulation in Saccharomyces cerevisiae. Gene. 2002, 290(1–2), 1–18. DOI: 10.1016/S0378-1119(02)00558-9.
  • Beltran, G.; Rozes, N.; Mas, A.; Guillamon, J. M. Effect of Low-Temperature Fermentation on Yeast Nitrogen Metabolism. World J. Microb. Bio. 2007, 23(6), 809–815. DOI: 10.1007/s11274-006-9302-6.
  • Gutierrez, A.; Chiva, R.; Beltran, G.; Mas, A.; Guillamon, J. M. Biomarkers for Detecting Nitrogen Deficiency During Alcoholic Fermentation in Different Commercial Wine Yeast Strains. Food Micro. Biol. 2013, 34(1), 227–237. DOI: 10.1016/j.fm.2012.12.004.
  • Hofman-Bang, J. Nitrogen Catabolite Repression in Saccharomyces cerevisiae. Mol. Biol. Evol. 1999, 12(1), 35–73. DOI: 10.1385/MB:12:1:35.
  • Kodama, S.; Suzuki, T.; Fujinawa, S.; Teja, P. D. L.; Yotsuzuka, F. Urea Contribution to Ethyl Carbamate Formation in Commercial Wines During Storage. Am. J. Enol. Viticult. 1994, 45(1), 17–24. DOI: 10.5344/ajev.1994.45.1.17.
  • Laidler, K. J. The Development of the Arrhenius Equation. J. Chem. Educ. 1984, 61(6), 494. DOI: 10.1021/ed061p494.
  • Ranade, V. V. Engineering Reactors for Catalytic Reactions. J. Chem. Sci. 2014, 126(2), 341–351. DOI: 10.1007/s12039-014-0589-9.
  • Schipper, L. A.; Hobbs, J. K.; Rutledge, S.; Arcus, V. L. Thermodynamic Theory Explains the Temperature Optima of Soil Microbial Processes and High Q10 Values at Low Temperatures. Global. Change. Biol. 2014, 20(11), 3578–3586. DOI: 10.1111/gcb.12596.
  • Ma, Y. X.; Guo, S. L.; Zhang, J. X.; Xu, Y.; Wang, D. Kinetic Modeling of Ethyl Carbamate Formation from Urea in Huangjiu During Storage. Food Control. 2021, 129, 108249. DOI: 10.1016/j.foodcont.2021.108249.
  • Liu, X. Y.; Qian, M.; Dong, H.; Bai, W. D.; Zhao, W. H.; Li, X. L.; Liu, G. L. Effect of Ageing Process on Carcinogen Ethyl Carbamate (EC), Its Main Precursors and Aroma Compound Variation in Hakka Huangjiu Produced in Southern China. Int J. Food Sci. Tech. 2020, 55(4), 1773–1780. DOI: 10.1111/ijfs.14464.
  • Yu, W.; Li, X. M.; Lu, J.; Xie, G. F. Citrulline Production by Lactic Acid Bacteria in Chinese Rice Wine. J. I Brewing. 2018, 124(1), 85–90. DOI: 10.1002/jib.475.
  • Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria. Appl. Environ. Microb. 1995, 61(1), 310–316. DOI: 10.1128/AEM.61.1.310-316.1995.
  • Romero, S. V.; Reguant, C.; Bordons, A.; Masque, M. C. Potential Formation of Ethyl Carbamate in Simulated Wine Inoculated with Oenococcus oeni and Lactobacillus plantarum. Int J. Food Sci. Tech. 2009, 44(6), 1206–1213. DOI: 10.1111/j.1365-2621.2009.01948.x.
  • Zhang, J. R.; Du, G. C.; Chen, J.; Fang, F. Characterization of a bacillus amyloliquefaciens Strain for Reduction of Citrulline Accumulation During Soy Sauce Fermentation. Biotechnol. Lett. 2016, 38(10), 1723–1731. DOI: 10.1007/s10529-016-2147-7.
  • Liu, S. Q.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J. Arginine Catabolism in Wine Lactic Acid Bacteria: Is it via the Arginine Deiminase Pathway or the Arginase-Urease Pathway? J. Bacteriol. 1996, 81(5), 486–492. DOI: 10.1111/j.1365-2672.1996.tb01944.x.
  • Tonon, T.; Lonvaud-Funel, A. Arginine Metabolism by Wine – Lactobacilli Isolated from Wine. Food. Micro.biol. 2002, 19(5), 451–461. DOI: 10.1006/fmic.2002.0502.
  • Aresta, M.; Boscolo, M.; Franco, D. W. Copper (II) Catalysis in Cyanide Conversion into Ethyl Carbamate in Spirits and Relevant Reactions. J. AGR. FOOD. CHEM. 2001, 49(6), 2819–2824. DOI: 10.1021/jf001346w.
  • Li, G. H.; Zhong, Q. D.; Wang, D. B.; Zhang, X. Y.; Gao, H. B.; Shen, S. G. Determination and Formation of Ethyl Carbamate in Chinese Spirits. Food.Control. 2015, 56, 169–176. DOI: 10.1016/j.foodcont.2015.03.029.
  • Weber, J. V.; Sharypov, V. I. Ethyl Carbamate in Foods and Beverages: A Review. Environ. Chem. Lett. 2009, 7(3), 233–247. DOI: 10.1007/s10311-008-0168-8.
  • Xia, Q.; Yang, C. J.; Wu, C. D.; Zhou, R. Q.; Li, Y. F. Quantitative Strategies for Detecting Different Levels of Ethyl Carbamate (EC) in Various Fermented Food Matrices: An Overview. Food Control. 2018, 84, 499–512. DOI: 10.1016/j.foodcont.2017.09.008.
  • Ough, C. S. Ethyl Carbamate in Fermented Beverages and Foods. I. Naturally Occurring Ethyl Carbamate. J. Agr. Food. Chem. 1976, 24(2), 323–328. DOI: 10.1021/jf60204a033.
  • Battaglia, R.; Conacher, H. B.; Page, B. D. Ethyl Carbamate (Urethane) in Alcoholic Beverages and Foods: A Review. Food Addit. Contam. A. 1990, 7(4), 477–496. DOI: 10.1080/02652039009373910.
  • Loefroth, G.; Gejvall, T. Diethyl Pyrocarbonate: Formation of Urethan in Treated Beverages. Science. 1971, 174(4015), 1248–1250. DOI: 10.1126/science.174.4015.1248.
  • Marcillaud, L.; Doneche, B. First Results About Use of a Possible Substitution Product for Sulfur Dioxide in Wine Making. J. Int. Sci. Vigne. Vin. 1997, 31(2), 93–98. DOI: 10.20870/oeno-one.1997.31.2.1088.
  • Polychroniadou, E.; Kanellaki, M.; Iconomopoulou, M.; Koutinas, A. A.; Marchant, R.; Banat, I. M. Grape and Apple Wines Volatile Fermentation Products and Possible Relation to Spoilage. Bioresource. Technol. 2003, 87(3), 295–298. DOI: 10.1016/S0960-8524(02)00237-7.
  • Fang, L.; Jia, M. X.; Zhao, H. P.; Kang, L. Z.; Shi, L. C.; Zhou, L. D.; Kong, W. J. Molecularly Imprinted Polymer-Based Optical Sensors for Pesticides in Foods: Recent Advances and Future Trends. Trends Food Sci. Tech. 2021, 116, 387–404. DOI: 10.1016/j.tifs.2021.07.039.
  • Sobiech, M.; Lulinski, P.; Wieczorek, P. P.; Marc, M. Quantum and Carbon Dots Conjugated Molecularly Imprinted Polymers As Advanced Nanomaterials for Selective Recognition of Analytes in Environmental, Food and Biomedical Applications. TrAC-Trend. Anal. Chem. 2021, 142, 116306. DOI: 10.1016/j.trac.2021.116306.
  • Villa, C. C.; Sanchez, L. T.; Valencia, G. A.; Ahmed, S.; Gutierrez, T. J. Molecularly Imprinted Polymers for Food Applications: A Review. Trends Food Sci. Tech. 2021, 111, 642–669. DOI: 10.1016/j.tifs.2021.03.003.
  • Basak, S.; Venkatram, R.; Singhal, R. S. Recent Advances in the Application of Molecularly Imprinted Polymers (MIPs) in Food Analysis. Food.Control. 2022, 139, 109074. DOI: 10.1016/j.foodcont.2022.109074.
  • Carballido, L.; Karbowiak, T.; Cayot, P.; Gerometta, M.; Sok, N.; Bou-Maroun, E. Applications of Molecularly Imprinted Polymers and Perspectives for Their Use as Food Quality Trackers. Chem. 2022, 8(9), 2330–2341. DOI: 10.1016/j.chempr.2022.05.021.
  • Perestrelo, R.; Petronilho, S.; Camara, J. S.; Rocha, S. M. Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Combined with Solid Phase Microextraction As a Powerful Tool for Quantification of Ethyl Carbamate in Fortified Wines. The Case Study of Madeira Wine. J. Chromatogr. A. 2010, 1217(20), 3441–3445. DOI: 10.1016/j.chroma.2010.03.027.
  • Zhou, K.; Liu, Y.; Li, W. Q.; Liu, G. L.; Wei, N.; Sun, Y. M.; Bai, W. D.; Xu, Z. L. An Improved HPLC-FLD for Fast and Simple Detection of Ethyl Carbamate in Soy Sauce and Prediction of Precursors. Food Anal. Method. 2017, 10(12), 3856–3865. DOI: 10.1007/s12161-017-0948-5.
  • Luo, L.; Lei, H. T.; Yang, J. Y.; Liu, G. L.; Sun, Y. M.; Bai, W. D.; Wang, H.; Shen, Y. D.; Chen, S.; Xu, Z. L. Development of an Indirect ELISA for the Determination of Ethyl Carbamate in Chinese Rice Wine. Analytica. Chimica.Acta. 2017, 950, 162–169. DOI: 10.1016/j.aca.2016.11.008.
  • Han, S.; Yang, L.; Wen, Z. G.; Chu, S. Y.; Wang, M.; Wang, Z. Y.; Jiang, C. L. A Dual-Response Ratiometric Fluorescent Sensor by Europium-Doped CdTe Quantum Dots for Visual and Colorimetric Detection of Tetracycline. J. Hazard. Mater. 2020, 398. DOI: 10.1016/j.jhazmat.2020.122894.
  • Jiang, R.; Zhang, Y.; Zhang, Q.; Li, L.; Yang, L. Carbon Dot/Gold Nanocluster-Based Fluorescent Colorimetric Paper Strips for Quantitative Detection of Iodide Ions in Urine. Acs Appl. Nano Mater. 2021, 4(9), 9760–9767. DOI: 10.1021/acsanm.1c02167.
  • Wang, H. Q.; Yang, L.; Chu, S. Y.; Liu, B. H.; Zhang, Q. K.; Zou, L. M.; Yu, S. M.; Jiang, C. L. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal. Chem. 2019, 91(14), 9292–9299. DOI: 10.1021/acs.analchem.9b02297.
  • Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C. Colorimetric Fluorescent Paper Strip with Smartphone Platform for Quantitative Detection of Cadmium Ions in Real Samples. J. Hazard. Mater. 2020, 392. DOI: 10.1016/j.jhazmat.2020.122506.
  • Wu, Z. Z.; Xu, E. B.; Li, J. P.; Long, J.; Jiao, A. Q.; Jin, Z. Y. Highly Sensitive Determination of Ethyl Carbamate in Alcoholic Beverages by Surface-Enhanced Raman Spectroscopy Combined with a Molecular Imprinting Polymer. R.S.C. Adv. 2016, 6(111), 109442–109452. DOI: 10.1039/c6ra23165a.
  • Zhu, X. C.; Han, L. X.; Liu, H. L.; Sun, B. G. A Smartphone-Based Ratiometric Fluorescent Sensing System for On-Site Detection of Pyrethroids by Using Blue-Green Dual-Emission Carbon Dots. Food. Chem. 2022, 379, 132154. DOI: 10.1016/j.foodchem.2022.132154.
  • Zhu, X. C.; Chuai, Q.; Zhang, D. W.; Liu, H. L.; Sun, B. G. A Robust Ratiometric Fluorescent Sensor Based on Covalent Assembly of Dipeptides and Biomolecules for the High-Sensitive and Optosmart Detection of Pyrethroids. J. Agr. Food. Chem. 2023, 71, 3040–3049. DOI: 10.1021/acs.jafc.2c07397.
  • Zhang, Y.; Zhu, X. C.; Li, M. J.; Liu, H. L.; Sun, B. G. Temperature-Responsive Covalent Organic Framework Encapsulated Carbon Dot-Based Sensing Platform for Pyrethroid Detection via Fluorescence Response and Smartphone Readout. J. Agric. Food. Chem. 2022, 70(20), 6059–6071. DOI: 10.1021/acs.jafc.2c01568.
  • Han, L. X.; Meng, C.; Zhang, D. W.; Liu, H. L.; Sun, B. G. Fabrication of a Fluorescence Probe via Molecularly Imprinted Polymers on Carbazole-Based Covalent Organic Frameworks for Optosensing of Ethyl Carbamate in Fermented Alcoholic Beverages. Analytica.Chimica. Acta. 2022, 1192, 339381. DOI: 10.1016/j.aca.2021.339381.
  • Han, L. X.; Zhu, P.; Liu, H. L.; Sun, B. G. Molecularly Imprinted Bulk and Sol-Gel Optosensing Based on Biomass Carbon Dots Derived from Watermelon Peel for Detection of Ethyl Carbamate in Alcoholic Beverages. Microchim. Acta. 2022, 189(8), 286. DOI: 10.1007/s00604-022-05388-1.
  • Han, L. X.; Zhu, X. C.; Zhang, D. W.; Liu, H. L.; Sun, B. G. Peptide-Based Molecularly Imprinted Polymer: A Visual and Digital Platform for Specific Recognition and Detection of Ethyl Carbamate. ACS. Sens. 2023, 8(2), 694–703. DOI: 10.1021/acssensors.2c02197.
  • Wei, L. N.; Chen, H. Y.; Liu, R.; Wang, S.; Liu, T. K.; Hu, Z. K.; Lan, W.; Yu, Y. J.; She, Y. B.; Fu, H. Y. Fluorescent Sensor Based on Quantum Dots and Nano-Porphyrin for Highly Sensitive and Specific Determination of Ethyl Carbamate in Fermented Food. J. Agr. Food. Chem. 2021, 101(15), 6193–6201. DOI: 10.1002/jsfa.11270.
  • Alizadeh, T. Preparation of Molecularly Imprinted Polymer Containing Selective Cavities for Urea Molecule and Its Application for Urea Extraction. Analytica.Chimica.Acta. 2010, 669(1–2), 94–101. DOI: 10.1016/j.aca.2010.04.044.
  • Alizadeh, T.; Akbari, A. A Capacitive Biosensor for Ultra-Trace Level Urea Determination Based on Nano-Sized Urea-Imprinted Polymer Receptors Coated on Graphite Electrode Surface. Biosens. Bioelectron. 2013, 43, 321–327. DOI: 10.1016/j.bios.2012.12.043.
  • Meng, C.; Chen, Y. H.; Zhang, D. W.; Liu, H. L.; Sun, B. G. Stable Light-Emitting Bionic Antibody-Conjugated Covalent Organic Frameworks for the Adsorption of Urea and Control of Ethyl Carbamate. Sens. Actuators. B. 2024, 401, 134917. DOI: 10.1016/j.snb.2023.134917.
  • Woznica, M.; Sobiech, M.; Lulinski, P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. Nanomaterials. 2023, 13(2), 248. DOI: 10.3390/nano13020248.
  • Meng, C.; Xie, C. C.; He, J. B.; Chen, X. L.; Liu, H. L.; Sun, B. G. Ionic Liquid-Enhanced Lemon Biomass Carbon Dots with Sustainable Use in Bionic Antibody Microspheres for Urea Capture and Ethyl Carbamate Inhibition. Food.Chem. 2023, 415, 135715. DOI: 10.1016/j.foodchem.2023.135715.
  • Lafarge, C.; Bitar, M.; El Hosry, L.; Cayot, P.; Bou-Maroun, E. Comparison of Molecularly Imprinted Polymers (MIP) and Sol-Gel Molecularly Imprinted Silica (MIS) for Fungicide in a Hydro Alcoholic Solution. Mater. Today Commun. 2020, 24, 101157. DOI: 10.1016/j.mtcomm.2020.101157.
  • Zhang, W. D.; Zhang, Y.; Wang, R. Y.; Zhang, P.; Zhang, Y. Y.; Randell, E.; Zhang, M. Y.; Jia, Q. A Review: Development and Application of Surface Molecularly Imprinted Polymers Toward Amino Acids, Peptides, and Proteins. Analytica. Chimica. Acta. 2022, 1234, 340319. DOI: 10.1016/j.aca.2022.340319.
  • Cheng, Y.; Xu, K. L.; Li, H.; Li, Y. F.; Liang, B. Preparation of Urea-Imprinted Cross-Linked Chitosan and Its Adsorption Behavior. Anal. Lett. 2014, 47(6), 1063–1078. DOI: 10.1080/00032719.2013.860535.
  • Yang, Z. P.; Qin, T. T.; Niu, Y. T.; Zhang, Y. Y.; Zhang, C. J.; Li, P.; Zhu, M.; Jia, Y. H.; Li, Q. W. Flexible Visible-Light-Driven Photoelectrochemical Biosensor Based on Molecularly Imprinted Nanoparticle Intercalation-Modulated Graphene Fiber for Ultrasensitive Urea Detection. Carbon. 2020, 157, 457–465. DOI: 10.1016/j.carbon.2019.10.061.
  • Cheng, Y. J.; Chen, T.; Fu, D. L.; L, J. Q. A Molecularly Imprinted Nanoreactor Based on Biomimetic Mineralization of Bi-Enzymes for Specific Detection of Urea and Its Analogues. Sens. Actuators. B. 2022, 350, 130909. DOI: 10.1016/j.snb.2021.130909.
  • Baggiani, C.; Anfossi, L.; Baravalle, P.; Giovannoli, C.; Tozzi, C. Selectivity Features of Molecularly Imprinted Polymers Recognising the Carbamate Group. Analytica.Chimica.Acta. 2005, 531(2), 199–207. DOI: 10.1016/j.aca.2004.10.025.
  • Zhao, X.; Zuo, J.; Qiu, S.; Hu, W.; Wang, Y.; Zhang, J. Reduced Graphene Oxide-Modified Screen-Printed Carbon (rGO-SPCE)-Based Disposable Electrochemical Sensor for Sensitive and Selective Determination of Ethyl Carbamate. Food Anal. Method. 2017, 10(10), 3329–3337. DOI: 10.1007/s12161-017-0886-2.
  • Guo, M.; Hu, Y. L.; Wang, L. X.; Brodelius, P. E.; Sun, L. P. A Facile Synthesis of Molecularly Imprinted Polymers and Their Properties As Electrochemical Sensors for Ethyl Carbamate Analysis. R.S.C. Adv. 2018, 8(69), 39721–39730. DOI: 10.1039/c8ra08213h.
  • Guo, M.; Zhang, X. G.; Zheng, Y. L.; Huang, D. H. Synthesis of Switchable Intelligent Molecularly Imprinted Polymers with Selective Adsorption of Ethyl Carbamate and Their Application in Electrochemical Sensor Analysis. R.S.C. Adv. 2018, 8(45), 25636–25644. DOI: 10.1039/c8ra04323j.
  • Poonia, K.; Raizada, P.; Singh, A.; Verma, N.; Ahamad, T.; Alshehri, S. M.; Khan, A. A. P.; Singh, P.; Hussain, C. M. Magnetic Molecularly Imprinted Polymer Photocatalysts: Synthesis, Applications and Future Perspective. J. Ind. Eng. Chem. 2022, 113, 1–14. DOI: 10.1016/j.jiec.2022.05.029.
  • Saeedeh, A. Application of Magnetic Molecularly Imprinted Polymer as a Versatile and Highly Selective Tool in Food and Environmental Analysis: Recent Developments and Trends. TrAC-Trend. Anal. Chem. 2017, 90, 89–106. DOI: 10.1016/j.trac.2017.03.001.
  • Yuan, X. Y.; He, J. B.; Su, H. F.; Liu, H. L.; Sun, B. G. Magnetically Controlled Nanorobots Based on Red Emissive Peptide Dots and Artificial Antibodies for Specific Recognition and Smart Scavenging of N-Epsilon-(Carboxymethyl)lysine in Dairy Products. J. AGR. FOOD. CHEM. 2023, 71(12), 4970–4981. DOI: 10.1021/acs.jafc.2c08777.
  • Yuan, X. Y.; Meng, C.; Liu, H. L.; Sun, B. G. Magnetically Driven Nanorobots Based on Peptides Nanodots with Tunable Photoluminescence for Rapid Scavenging Reactive α-Dicarbonyl Species and Effective Blocking of Advanced Glycation End Products. Food.Chem. 2023, 422, 136252. DOI: 10.1016/j.foodchem.2023.136252.
  • Gao, L.; Chen, L. G.; Li, X. W. Magnetic Molecularly Imprinted Polymers Based on Carbon Nanotubes for Extraction of Carbamates. Microchim. Acta. 2015, 182(3–4), 781–787. DOI: 10.1007/s00604-014-1388-1.
  • Yang, S. Y.; Wang, Y. H.; He, J. Y.; Yang, R. X.; Ma, X.; Yuan, Y. H.; Yue, T. L.; Sheng, Q. L. Functionalized Magnetic Covalent Organic Framework Nanocomposites for High-Efficiency Adsorption of Ethyl Carbamate from Liquor. Food Front. 2023, 4(2), 911–921. DOI: 10.1002/fft2.241.
  • Kuang, Y.; Chen, W.; Chen, Z. H.; Xia, Y. L.; Rao, Q. Q.; Yang, S. X. Highly-Efficient Selective Recognition and Rapid Enrichment of Chrysin by Magnetic Surface Molecularly Imprinted Polymer. Food Chem. 2023, 405, 134993. DOI: 10.1016/j.foodchem.2022.134993.
  • Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Bee, A.; Menager, C. Design of Magnetic Molecularly Imprinted Polymer Nanoparticles for Controlled Release of Doxorubicin Under an Alternative Magnetic Field in Athermal Conditions. Nanoscale. 2015, 7(45), 18891–18896. DOI: 10.1039/c5nr06133d.
  • Madadian-Bozorg, N.; Zahedi, P.; Shamsi, M.; Safarian, S. Poly (Methacrylic Acid)-Based Molecularly Imprinted Polymer Nanoparticles Containing 5-Fluourouracil Used in Colon Cancer Therapy Potentially. Polym. Adv. Technol. 2018, 29(8), 2401–2409. DOI: 10.1002/pat.4353.
  • Gu, Z. K.; Dong, Y. R.; Xu, S. X.; Wang, L. S.; Liu, Z. Molecularly Imprinted Polymer-Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment-Triggered Release. Angew. Chem. Int. Edit. 2021, 60(5), 2663–2667. DOI: 10.1002/anie.202012956.
  • Mokhtari, P.; Ghaedi, M. Water Compatible Molecularly Imprinted Polymer for Controlled Release of Riboflavin As Drug Delivery System. Eur. Polym. J. 2019, 118, 614–618. DOI: 10.1016/j.eurpolymj.2019.06.038.
  • Arabi, M.; Ostovan, A.; Li, J. H.; Wang, X. Y.; Zhang, Z. Y.; Choo, J.; Chen, L. X. Molecular Imprinting: Green Perspectives and Strategies. Adv. Mater. 2021, 33(30), 2100543. DOI: 10.1002/adma.202100543.
  • Wang, W. Q.; Li, H.; Li, M. Y.; Lu, H. L.; Pan, J. M. Layer-By-Layer Assembled Magnetic Molecularly Imprinted Nanoparticles for Highly Specific Separation of Adenosine 5′-Monophosphate: Relations Between Adsorption Properties and Imprinted Layers. Sep. Purif. Technol. 2024, 330(C), 125346. DOI: 10.1016/j.seppur.2023.125346.
  • Wackerlig, J.; Lieberzeit, P. A. Molecularly Imprinted Polymer Nanoparticles in Chemical Sensing - Synthesis, Characterisation and Application. Sens. Actuators. B. 2015, 207(A), 144–157. DOI: 10.1016/j.snb.2014.09.094.
  • Farooq, S.; Xu, L. Z.; Ostovan, A.; Qin, C. L.; Liu, Y. J.; Pan, Y. X.; Ping, J. F.; Ying, Y. B. Assessing the Greenification Potential of Cyclodextrin-Based Molecularly Imprinted Polymers for Pesticides Detection. Food Chem. 2023, 429, 136822. DOI: 10.1016/j.foodchem.2023.136822.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.