83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the effect of temperature on pressure drop and under-rib convection in PEMFC

, , , &
Received 18 Dec 2023, Accepted 06 Apr 2024, Published online: 15 Apr 2024

References

  • Acar, M. C. 2023. Modeling the influence of coolant flow directions on thermal performance of PEM fuel cell cooling plates with serpentine and straight flow channels. Thermochimica Acta 726:179560. doi:10.1016/j.tca.2023.179560.
  • Ahmet, K., and A. Z. Weber. 2017. New insights into perfluorinated sulfonic-acid ionomers. Chemical Reviews 117 (3):987–1104. doi:10.1021/acs.chemrev.6b00159.
  • Aida, F., and M. A. Rosen. 2022. PEM fuel cell-assisted lithium ion battery electric vehicle integrated with an air-based thermal management system. International Journal of Hydrogen Energy 47 (84):35810–24. doi:10.1016/j.ijhydene.2022.08.153.
  • Anderson, R., L. Zhang, Y. Ding, M. Blanco, X. Bi, and D. P. Wilkinson. 2010. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. Journal of Power Sources 195 (15):4531–53. doi:10.1016/j.jpowsour.2009.12.123.
  • Baz, F. B., S. Ookawara, and M. Ahmed. 2019. Enhancing under-rib mass transport in proton exchange membrane fuel cells using new serpentine flow field designs. International Journal of Hydrogen Energy 44 (58):30644–62. doi:10.1016/j.ijhydene.2018.11.147.
  • Chang, D.-H., and S.-Y. Wu. 2015. The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields. International Journal of Hydrogen Energy 40 (35):11659–67. doi:10.1016/j.ijhydene.2015.04.153.
  • Chen, Z. X., D. B. Ingham, M. S. Ismail, L. Ma, K. J. Hughes, and M. Pourkashanian. 2019. Dynamics of liquid water in the anode flow channels of PEM fuel cells: A numerical parametric study. Journal of the Energy Institute 92 (6):1956–67. doi:10.1016/j.joei.2018.10.016.
  • Chen, D., L. Pan, P. Pei, X. Song, P. Ren, and L. Zhang. 2022. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Research 15 (6):5038–63. doi:10.1007/s12274-022-4154-4.
  • Chen, D., Y. Zou, W. Shi, S. Serbin, and H. You. 2021. Proton exchange membrane fuel cells using new cathode field designs of multi‐inlet shunt intake design. International Journal of Energy Research 45 (7):9948–60. doi:10.1002/er.6489.
  • Choi, K. S., B. G. Kim, K. Park, and H. M. Kim. 2012. Current advances in polymer electrolyte fuel cells based on the promotional role of under‐rib convection. Fuel Cells 12 (6):908–38. doi:10.1002/fuce.201200035.
  • Dimitrova, Z., and W. Bou Nader. 2022. PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles. Energy 239:121933. doi:10.1016/j.energy.2021.121933.
  • Duy, V. N., J. Lee, K. Kim, J. Ahn, S. Park, T. Kim, and H. M. Kim. 2015. Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells. Journal of Power Sources 293:447–57. doi:10.1016/j.jpowsour.2015.05.107.
  • Ghanbarian, A., M. J. Kermani, J. Scholta, and M. Abdollahzadeh. 2018. Polymer electrolyte membrane fuel cell flow field design criteria–application to parallel serpentine flow patterns. Energy Conversion and Management 166:281–96. doi:10.1016/j.enconman.2018.04.018.
  • Gu, X., Z. Hou, and J. Cai. 2021. Data-based flooding fault diagnosis of proton exchange membrane fuel cell systems using LSTM networks. Energy and AI 4:100056. doi:10.1016/j.egyai.2021.100056.
  • Ijaodola, O. S., Z. El-Hassan, E. Ogungbemi, F. N. Khatib, T. Wilberforce, J. Thompson, and A. G. Olabi. 2019. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy 179:246–67. doi:10.1016/j.energy.2019.04.074.
  • Jiao, K., J. Bachman, Y. Zhou, and J. W. Park. 2014. Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell. Applied Energy 115:75–82. doi:10.1016/j.apenergy.2013.10.026.
  • Jiao, K., and X. Li. 2011. Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science 37 (3):221–91. doi:10.1016/j.pecs.2010.06.002.
  • Jithesh, P. K., T. Sundararajan, and S. K. Das. 2015. The effect of nonuniform under-rib convection on reactant and liquid water distribution in proton exchange membrane fuel cells. Journal of Fuel Cell Science and Technology 12 (4):041003. doi:10.1115/1.4030514.
  • Kim, H.-M. 2019. Study on the under-rib convection for improving in situ reactants supply and water discharge, hysteresis effect and current density distributions for polymer electrolyte fuel cells. International Journal of Electrochemical Science 14 (1):1024–39. doi:10.20964/2019.01.93.
  • Liao, P., S. Xu, P. Ming, B. Li, C. Zhang, and D. Yang. 2021. The effects of anode serpentine flow field structure and humidity on performance of PEMFCs. ECS Transactions 104 (8):295. doi:10.1149/10408.0295ecst.
  • Li, Q., Z. Liu, Y. Sun, S. Yang, and C. Deng. 2021. A review on temperature control of proton exchange membrane fuel cells. Processes 9 (2):235. doi:10.3390/pr9020235.
  • Li, Y. H., P. Pei, Z. Ma, P. Ren, Z. Wu, D. Chen, and H. Huang. 2019. Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell. Applied Energy 248:321–29. doi:10.1016/j.apenergy.2019.04.140.
  • Liu, Y., S. Bai, P. Wei, P. Pei, S. Yao, and H. Sun. 2020a. Lowering the pressure drop and cost of a proton exchange membrane fuel cell by flow field plate design. Energy & Fuels 34 (7):8857–63. doi:10.1021/acs.energyfuels.0c00914.
  • Liu, Y., S. Bai, P. Wei, P. Pei, S. Yao, and H. Sun. 2020b. Numerical and experimental investigation of the asymmetric humidification and dynamic temperature in proton exchange membrane fuel cell. Fuel Cells 20 (1):48–59. doi:10.1002/fuce.201900140.
  • Li, W. Z., W. W. Yang, W. Y. Zhang, Z. G. Qu, and Y. L. He. 2019. Three-dimensional modeling of a PEMFC with serpentine flow field incorporating the impacts of electrode inhomogeneous compression deformation. International Journal of Hydrogen Energy 44 (39):22194–209. doi:10.1016/j.ijhydene.2019.06.187.
  • Li, Y. B., Z. Zhou, X. Liu, and W. Wu. 2019. Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Applied Energy 242:1513–27. doi:10.1016/j.apenergy.2019.03.189.
  • Lochner, T., R. M. Kluge, J. Fichtner, H. A. El‐Sayed, B. Garlyyev, and A. S. Bandarenka. 2020. Temperature effects in polymer electrolyte membrane fuel cells. ChemElectrochem 7 (17):3545–68. doi:10.1002/celc.202000588.
  • Mortazavi, M. 2021. Two-phase flow pressure drop in PEM fuel cell flow channel bends. International Journal of Multiphase Flow 143:103759. doi:10.1016/j.ijmultiphaseflow.2021.103759.
  • Muirhead, D., R. Banerjee, M. G. George, N. Ge, P. Shrestha, H. Liu, J. Lee, and A. Bazylak. 2018. Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers. Electrochimica Acta 274:250–65. doi:10.1016/j.electacta.2018.04.050.
  • Nam, J. H., K. J. Lee, S. Sohn, and C. J. Kim. 2009. Multi-pass serpentine flow-fields to enhance under-rib convection in polymer electrolyte membrane fuel cells: Design and geometrical characterization. Journal of Power Sources 188 (1):14–23. doi:10.1016/j.jpowsour.2008.11.093.
  • Nandjou, F., J. P. Poirot-Crouvezier, M. Chandesris, J. F. Blachot, C. Bonnaud, and Y. Bultel. 2016. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application. Journal of Power Sources 326:182–92. doi:10.1016/j.jpowsour.2016.07.004.
  • Nimir, W., A. Al-Othman, M. Tawalbeh, A. Al Makky, A. Ali, H. Karimi-Maleh, F. Karimi, and C. Karaman. 2023. Approaches towards the development of heteropolyacid-based high temperature membranes for PEM fuel cells. International Journal of Hydrogen Energy 48 (17):6638–56. doi:10.1016/j.ijhydene.2021.11.174.
  • Niu, Z., K. Jiao, Y. Wang, Q. Du, and Y. Yin. 2018. Numerical simulation of two‐phase cross flow in the gas diffusion layer microstructure of proton exchange membrane fuel cells. International Journal of Energy Research 42 (2):802–16. doi:10.1002/er.3867.
  • Okonkwo, P. C., O. O. Ige, P. C. Uzoma, W. Emori, A. Benamor, and A. M. Abdullah. 2021. Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy 46 (29):15850–65. doi:10.1016/j.ijhydene.2021.02.078.
  • Ozen, D. N., B. Timurkutluk, and K. Altinisik. 2016. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renewable and Sustainable Energy Reviews 59:1298–306. doi:10.1016/j.rser.2016.01.040.
  • Pang, Y., and Y. Wang. 2023. Water spatial distribution in polymer electrolyte membrane fuel cell: Convolutional neural network analysis of neutron radiography. Energy and AI 14:100265. doi:10.1016/j.egyai.2023.100265.
  • Pan, Y., H. Wang, and N. P. Brandon. 2022. A fast two-phase non-isothermal reduced-order model for accelerating PEM fuel cell design development. International Journal of Hydrogen Energy 47 (91):38774–92. doi:10.1016/j.ijhydene.2022.09.044.
  • Parekh, A. 2022. Recent developments of proton exchange membranes for PEMFC: A review. Frontiers in Energy Research 10:956132. doi:10.3389/fenrg.2022.956132.
  • Park, K., H. M. Kim, and K. S. Choi. 2013. Numerical and experimental verification of the polymer electrolyte fuel cell performances enhanced by under‐rib convection. Fuel Cells 13 (5):927–34. doi:10.1002/fuce.201200127.
  • Pei, P., Y. Li, H. Xu, and Z. Wu. 2016. A review on water fault diagnosis of PEMFC associated with the pressure drop. Applied Energy 173:366–85. doi:10.1016/j.apenergy.2016.04.064.
  • Pourrahmani, H., and J. Van Herle. 2022. Water management of the proton exchange membrane fuel cells: Optimizing the effect of microstructural properties on the gas diffusion layer liquid removal. Energy 256:124712. doi:10.1016/j.energy.2022.124712.
  • Qin, H., H. Chen, and T. Zhang. 2023, June. Study on anode single-phase flow pressure drop law of proton exchange membrane fuel cell. Journal of Physics: Conference Series 2534: 012009. doi:10.1088/1742-6596/2534/1/012009
  • Randall, C. R., and S. C. DeCaluwe. 2022. Predicted impacts of Pt and ionomer distributions on low-pt-loaded PEMFC performance. Journal of the Electrochemical Society 169 (9):094512. doi:10.1149/1945-7111/ac8cb4.
  • Ren, P., P. Pei, D. Chen, L. Zhang, Y. Li, X. Song, M. K. Wang, and H. Wang. 2022. Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment. Renewable Energy 194:1277–87. doi:10.1016/j.renene.2022.05.153.
  • Ren, P., P. Pei, Y. Li, Z. Wu, D. Chen, and S. Huang. 2020. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Progress in Energy and Combustion Science 80:100859. doi:10.1016/j.pecs.2020.100859.
  • Rupak, B., and S. G. Kandlikar. 2014. Experimental investigation of two-phase flow pressure drop transients in polymer electrolyte membrane fuel cell reactant channels and their impact on the cell performance. Journal of Power Sources 268:194–203. doi:10.1016/j.jpowsour.2014.05.123.
  • Sepe, M., P. Satjaritanun, I. V. Zenyuk, N. Tippayawong, and S. Shimpalee. 2021. The impact of micro porous layer on liquid water evolution inside PEMFC using lattice Boltzmann method. Journal of the Electrochemical Society 168 (7):074507. doi:10.1149/1945-7111/ac154e.
  • Shangguan, X., Y. Li, Y. Qin, S. Cao, J. Zhang, and Y. Yin. 2021. Effect of the porosity distribution on the liquid water transport in the gas diffusion layer of PEMFC. Electrochimica acta 371:137814. doi:10.1016/j.electacta.2021.137814.
  • Subin, K., and P. K. Jithesh. 2018. Experimental study on self-humidified operation in PEM fuel cells. Sustainable Energy Technologies and Assessments 27:17–22. doi:10.1016/j.seta.2018.03.004.
  • Suresh, P. V., S. Jayanti, A. P. Deshpande, and P. Haridoss. 2011. An improved serpentine flow field with enhanced cross-flow for fuel cell applications. International Journal of Hydrogen Energy 36 (10):6067–72. doi:10.1016/j.ijhydene.2011.01.147.
  • Tang, X., Y. Zhang, and S. Xu. 2023. Temperature sensitivity characteristics of PEM fuel cell and output performance improvement based on optimal active temperature control. International Journal of Heat and Mass Transfer 206:123966. doi:10.1016/j.ijheatmasstransfer.2023.123966.
  • Tehlar, D., R. Flückiger, A. Wokaun, and F. N. Büchi. 2010. Investigation of channel‐to‐channel cross convection in serpentine flow fields. fuel Cells 10 (6):1040–49. doi:10.1002/fuce.201000034.
  • Tran, T. D., D. H. Vu, S. Huang, and D. V. Nguyen. 2020. Various flow-field designs for enhancing fuel the cell performance of proton exchange membrane fuel cells. IOP Conference Series: Materials Science and Engineering 739: 012012). doi:10.1088/1757-899X/739/1/012012
  • Wang, B., K. Wu, F. Xi, J. Xuan, X. Xie, X. Wang, and K. Jiao. 2019. Numerical analysis of operating conditions effects on PEMFC with anode recirculation. Energy 173:844–56. doi:10.1016/j.energy.2019.02.115.
  • Wang, C., Q. Zhang, S. Shen, X. Yan, F. Zhu, X. Cheng, and J. Zhang. 2017. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells. Scientific Reports 7 (1):43447. doi:10.1038/srep43447.
  • Wu, L., L. An, D. Jiao, Y. Xu, G. Zhang, and K. Jiao. 2022. Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell. Applied Energy 323:119651. doi:10.1016/j.apenergy.2022.119651.
  • Wu, L., G. Zhang, B. Xie, C. Tongsh, and K. Jiao. 2021. Integration of the detailed channel two-phase flow into three-dimensional multi-phase simulation of proton exchange membrane electrolyzer cell. International Journal of Green Energy 18 (6):541–55. doi:10.1080/15435075.2020.1854270.
  • Yan, X., C. Lin, Z. Zheng, J. Chen, G. Wei, and J. Zhang. 2020. Effect of clam ping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Applied Energy 258:114073. doi:10.1016/j.apenergy.2019.114073.
  • Yano, H., I. Arima, M. Watanabe, A. Iiyama, and H. Uchida. 2017. Oxygen reduction activity and durability of ordered and disordered pt3co alloy nanoparticle catalysts at practical temperatures of polymer electrolyte fuel cells. Journal of the Electrochemical Society 164 (9):F966. doi:10.1149/2.1141709jes.
  • Yuming, Y., and Y. C. Liang. 2009. Modelling and analysis of a direct methanol fuel cell with under-rib mass transport and two-phase flow at the anode. Journal of Power Sources 194 (2):712–29. doi:10.1016/j.jpowsour.2009.06.023.
  • Yu, Z., L. Xia, G. Xu, C. Wang, and D. Wang. 2022. Improvement of the three-dimensional fine-mesh flow field of proton exchange membrane fuel cell (PEMFC) using CFD modeling, artificial neural network and genetic algorithm. International Journal of Hydrogen Energy 47 (82):35038–54. doi:10.1016/j.ijhydene.2022.08.077.
  • Zhang, L., H. T. Bi, D. P. Wilkinson, J. Stumper, and H. Wang. 2008. Gas–liquid two-phase flow patterns in parallel channels for fuel cells. Journal of Power Sources 183 (2):643–50. doi:10.1016/j.jpowsour.2008.05.080.
  • Zhang, L., Y. Liu, G. Bi, X. Liu, L. Wang, Y. Wan, and H. Sun. 2022. Modeling and experimental investigation of the anode inlet relative humidity effect on a PEM fuel cell. Energies 15 (13):4532. doi:10.3390/en15134532.
  • Zhang, Y., P. Zhang, Z. Yuan, H. He, Y. Zhao, and X. Liu. 2011. A tapered serpentine flow field for the anode of micro direct methanol fuel cells. Journal of Power Sources 196 (6):3255–59. doi:10.1016/j.jpowsour.2010.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.