84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Two-stage stochastic optimization of virtual power plant with wind power and uncertain demand

, , &
Received 26 May 2023, Accepted 27 Feb 2024, Published online: 22 Apr 2024

References

  • Bakhtvar, M., A. Al Hinai, M. S. El Moursi, and M. H. Albadi. 2021. A vision of flexible dispatchable hybrid solar-wind-energy storage power plant. IET Renewable Power Generation 15 (13):2983–96. doi:10.1049/rpg2.12234.
  • Bitar, E. Y., R. Rajagopal, P. P. Khargonekar, K. Poolla, and P. Varaiya. 2012. Bringing wind energy to market. IEEE Transactions on Power Systems 27 (3):1225–35. doi:10.1109/TPWRS.2012.2183395.
  • Bonneville Power Administration. 2022. “VER* generation & total load in the BPA balancing authority. Accessed April 21 2022. http://transmission.bpa.gov/business/operations/Wind/default.aspx
  • Braun, M. 2009. Provision of ancillary services by distributed generators: Technological and economic perspective, Vol. 10. Kassel: Kassel University Press GmbH.
  • Camal, S., F. Teng, A. Michiorri, G. Kariniotakis, and L. Badesa. 2019. Scenario generation of aggregated wind, photovoltaics and small hydro production for power systems applications. Applied Energy 242:1396–406. doi:10.1016/j.apenergy.2019.03.112.
  • Cheng, Q., P. Luo, P. Liu, X. Li, B. Ming, K. Huang, W. Xu, and Y. Gong. 2022. Stochastic short-term scheduling of a wind-solar-hydro complementary system considering both the day-ahead market bidding and bilateral contracts decomposition. International Journal of Electrical Power & Energy Systems 138:107904. doi:10.1016/j.ijepes.2021.107904.
  • Dahlke, S. 2018. Effects of wholesale electricity markets on wind generation in the midwestern United States. Energy Policy 122:358–68. doi:10.1016/j.enpol.2018.07.026.
  • Dent, C. J., J. W. Bialek, and B. F. Hobbs. 2011. Opportunity cost bidding by wind generators in forward markets: Analytical results. IEEE Transactions on Power Systems 26 (3):1600–08. doi:10.1109/TPWRS.2010.2100412.
  • De, G., Z. Tan, M. Li, L. Huang, and X. Song. 2018. Two-stage stochastic optimization for the strategic bidding of a generation company considering wind power uncertainty. Energies 11 (12):3527. doi:10.3390/en11123527.
  • Dowell, J., and P. Pinson. 2016. Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Transactions on Smart Grid 7 (2):763–70. doi:10.1109/TSG.2015.2424078.
  • Du, E., N. Zhang, C. Kang, B. Kroposki, H. Huang, M. Miao, and Q. Xia. 2016. Managing wind power uncertainty through strategic reserve purchasing. IEEE Transactions on Power Systems 32 (4):2547–59. doi:10.1109/TPWRS.2016.2617466.
  • Endemao-Ventura, L., J. Serrano Gonzlez, J. Manuel Roldn Fernndez, M. Burgos Payn, and J. Manuel Riquelme Santos. 2021. Optimal energy bidding for renewable plants: A practical application to an actual wind farm in Spain. Renewable Energy 175:1111–26. doi:10.1016/j.renene.2021.05.054.
  • Han, D., and J. H. Lee. 2021. Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources. Applied Energy 291:116830. doi:10.1016/j.apenergy.2021.116830.
  • Heredia, F.-J., M. D. Cuadrado, and C. Corchero. 2018. On optimal participation in the electricity markets of wind power plants with battery energy storage systems. Computers & Operations Research 96:316–29. doi:10.1016/j.cor.2018.03.004.
  • Hooshmand, R.-A., S. Mostafa Nosratabadi, and E. Gholipour. 2018. Event-based scheduling of industrial technical virtual power plant considering wind and market prices stochastic behaviors–A case study in Iran. Journal of Cleaner Production 172:1748–64. doi:10.1016/j.jclepro.2017.12.017.
  • Jordehi, A. R. 2022a. Risk-aware two-stage stochastic programming for electricity procurement of a large consumer with storage system and demand response. Journal of Energy Storage 51:104478. doi:10.1016/j.est.2022.104478.
  • Jordehi, A. R. 2022b. Two-stage stochastic programming for risk-aware scheduling of energy hubs participating in day-ahead and real-time electricity markets. Sustainable Cities and Society 81:103823. doi:10.1016/j.scs.2022.103823.
  • Jordehi, A. R., V. Sohrabi Tabar, and M. Ahmadi Jirdehi. 2022. A two-stage stochastic model for security-constrained market clearing with wind power plants, storage systems and elastic demands. Journal of Energy Storage 51:104550. doi:10.1016/j.est.2022.104550.
  • Jordehi, A. R., V. Sohrabi Tabar, S. A. Mansouri, M. Nasir, S. M. Hakimi, and S. Pirouzi. 2022. A risk-averse two-stage stochastic model for planning retailers including self-generation and storage system. Journal of Energy Storage 51:104380. doi:10.1016/j.est.2022.104380.
  • Jordehi, A. R., V. Sohrabi Tabar, S. A. Mansouri, F. Sheidaei, A. Ahmarinejad, and S. Pirouzi. 2022. Two-stage stochastic programming for scheduling microgrids with high wind penetration including fast demand response providers and fast-start generators. Sustainable Energy, Grids and Networks 31:100694. doi:10.1016/j.segan.2022.100694.
  • Lee, D., H. Shin, and R. Baldick. 2018. Bivariate probabilistic wind power and real-time price forecasting and their applications to wind power bidding strategy development. IEEE Transactions on Power Systems 33 (6):6087–97. doi:10.1109/TPWRS.2018.2830785.
  • Liu, L., and Z. Hu. 2020. Data-driven regulation reserve capacity determination based on Bayes theorem. IEEE Transactions on Power Systems 35 (2):1646–49. doi:10.1109/TPWRS.2020.2965763.
  • Liu, H., J. Qiu, and J. Zhao. 2022. A data-driven scheduling model of virtual power plant using Wasserstein distributionally robust optimization. International Journal of Electrical Power & Energy Systems 137:107801. doi:10.1016/j.ijepes.2021.107801.
  • Liu, T., and J. Xu. 2021. Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China. Energy Policy 157:112482. doi:10.1016/j.enpol.2021.112482.
  • Li, Y., Y. Wei, F. Zhu, J. Du, Z. Zhao, and M. Ouyang. 2023. The path enabling storage of renewable energy toward carbon neutralization in China. ETransportation 16:100226. doi:10.1016/j.etran.2023.100226.
  • Mansouri, S. A., E. Nematbakhsh, A. Rezaee Jordehi, M. Tostado-Véliz, F. Jurado, and Z. Leonowicz. 2022. A risk-based bi-level bidding system to manage day-ahead electricity market and scheduling of interconnected microgrids in the presence of smart homes. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1–6. Prague: IEEE. doi:10.1109/EEEIC/ICPSEurope54979.2022.9854685.
  • Pandi, H., J. M. Morales, A. J. Conejo, and I. Kuzle. 2013. Offering model for a virtual power plant based on stochastic programming. Applied Energy 105:282–92. doi:10.1016/j.apenergy.2012.12.077.
  • Pan, K., and Y. Guan. 2022. Integrated stochastic optimal self-scheduling for two-settlement electricity markets. INFORMS Journal on Computing 34 (3):1819–40. doi:10.1287/ijoc.2021.1150.
  • Pierrot, A., and P. Pinson. 2021. Adaptive generalized logit-normal distributions for wind power short-term forecasting. 2021 IEEE Madrid PowerTech, 1–6. Madrid: IEEE. doi:10.1109/PowerTech46648.2021.9494900.
  • Pinson, P. 2012. Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions. Journal of the Royal Statistical Society Series C: Applied Statistics 61 (4):555–76. doi:10.1111/j.1467-9876.2011.01026.x.
  • Pinson, P., C. Chevallier, and G. N. Kariniotakis. 2007. Trading wind generation from short-term probabilistic forecasts of wind power. IEEE Transactions on Power Systems 22 (3):1148–56. doi:10.1109/TPWRS.2007.901117.
  • Pudjianto, D., C. Ramsay, and G. Strbac. 2007. Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation 1 (1):10–16. doi:10.1049/iet-rpg:20060023.
  • Rouzbahani, H. M., H. Karimipour, and L. Lei. 2021. A review on virtual power plant for energy management. Sustainable Energy Technologies and Assessments 47:101370. doi:10.1016/j.seta.2021.101370.
  • Ruixiaoxiao, Z., G. Q. Shen, M. Ni, and J. K. Wong. 2019. An overview on the status quo of onshore and offshore wind power development and wind power enterprise localization in China. International Journal of Green Energy 16 (15):1646–64. doi:10.1080/15435075.2019.1681429.
  • Seok, H., C. Ok, and C. Chen. 2022. Wind power bidding strategy by harmonizing neural network and genetic algorithm. International Journal of Green Energy 19 (15):1649–57. doi:10.1080/15435075.2021.2021415.
  • Shabanzadeh, M., M.-K. Sheikh-El-Eslami, and M.-R. Haghifam. 2015. The design of a risk-hedging tool for virtual power plants via robust optimization approach. Applied Energy 155:766–77. doi:10.1016/j.apenergy.2015.06.059.
  • Southern California Edison. 2022. “Regulatory information–SCE load profiles”, Accessed April 21 2022. https://www.sce.com/wps/portal/home/regulatory/load-profiles
  • Subramanian, A., E. Bitar, P. Khargonekar, and K. Poolla. 2012. Market induced curtailment of wind power. 2012 IEEE Power and Energy Society General Meeting San Diego, 1–8. doi:10.1109/PESGM.2012.6345171.
  • Tan, H., W. Yan, Z. Ren, Q. Wang, and M. A. Mohamed. 2022. A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response. Energy 239:121875. doi:10.1016/j.energy.2021.121875.
  • Wang, F., X. Ge, P. Yang, K. Li, Z. Mi, P. Siano, and N. Dui. 2020. Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing. Energy 213:118765. doi:10.1016/j.energy.2020.118765.
  • Wang, Q., W. B. Hobbs, A. Tuohy, M. Bello, and D. J. Ault. 2021. Evaluating potential benefits of flexible solar power generation in the southern company system. IEEE Journal of Photovoltaics 12 (1):152–60. doi:10.1109/JPHOTOV.2021.3126118.
  • Yi, Z., Y. Xu, W. Gu, and W. Wu. 2019. A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation. IEEE Transactions on Sustainable Energy 11 (3):1332–46. doi:10.1109/TSTE.2019.2924936.
  • Yu, S., F. Fang, Y. Liu, and J. Liu. 2019. Uncertainties of virtual power plant: Problems and countermeasures. Applied Energy 239:454–70. doi:10.1016/j.apenergy.2019.01.224.
  • Zhang, Y., J. Le, F. Zheng, Y. Zhang, and K. Liu. 2019. Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration. Renewable Energy 135:122–35. doi:10.1016/j.renene.2018.11.094.
  • Zhao, Q., Y. Shen, and M. Li. 2016. Control and bidding strategy for virtual power plants with renewable generation and inelastic demand in electricity markets. IEEE Transactions on Sustainable Energy 7 (2):562–75. doi:10.1109/TSTE.2015.2504561.
  • Zhao, C., C. Wan, and Y. Song. 2021. Operating reserve quantification using prediction intervals of wind power: An integrated probabilistic forecasting and decision methodology. IEEE Transactions on Power Systems 36 (4):3701–14. doi:10.1109/TPWRS.2021.3053847.
  • Zhong, T., H.-T. Zhang, Y. Li, L. Liu, and R. Lu. 2020. Bayesian learning-based multi-objective distribution power network reconfiguration. IEEE Transactions on Smart Grid 12 (2):1174–84. doi:10.1109/TSG.2020.3027290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.