214
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical study of enhancing the electrical performance of photovoltaic panel using phase change material in transient conditions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 294-314 | Received 20 Jul 2023, Accepted 09 Nov 2023, Published online: 27 Nov 2023

References

  • Abdelrahman, H. E., M. H. Wahba, H. A. Refaey, M. Moawad, and N. S. Berbish. 2019. Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3. Solar Energy 177 ( October 2018):665–71. doi:10.1016/j.solener.2018.11.022.
  • Abdelrazik, A. S., F. A. Al-Sulaiman, and R. Saidur. 2020. Numerical investigation of the Effects of the Nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/Thermal systems. Energy Conversion and Management 205 ( August 2019):112449. doi:10.1016/j.enconman.2019.112449.
  • Ahmed, S., R. Karal, B. K. Das, and A. Das. 2023. Case Studies in thermal Engineering experimental investigation of cooling, wind velocity, and dust deposition Effects on solar PV performance in a tropical climate in Bangladesh. Case Studies in Thermal Engineering 50 (August):103409. doi:10.1016/j.csite.2023.103409.
  • Al-Najjar, T., M. Hussein, and J. M. Mahdi. 2022. Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/Phase-change material (PV/PCM) system. Applied Energy 315 (February):119027. doi:10.1016/j.apenergy.2022.119027.
  • Atkin, P., and M. M. Farid. 2015. Improving the Efficiency of Photovoltaic Cells Using PCM Infused Graphite and Aluminium Fins. Solar Energy 114:217–28. doi:10.1016/j.solener.2015.01.037.
  • Bria, A., B. Raillani, D. Chaatouf, M. Salhi, S. Amraqui, and A. Mezrhab. 2023. Effect of PCM thickness on the performance of the finned PV/PCM system. Materials Today: Proceedings 72:3617–25. doi:10.1016/j.matpr.2022.08.409.
  • Browne, M. C., B. Norton, and S. J. McCormack. 2016. Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133:533–48. doi:10.1016/j.solener.2016.04.024.
  • Carmona, M., A. Palacio Bastos, and J. Doria García. 2021. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy 172:680–96. doi:10.1016/j.renene.2021.03.022.
  • Chandrika, V. S., A. Karthick, N. M. Kumar, P. M. Kumar, B. Stalin, and M. Ravichandran. 2021. Experimental analysis of solar concrete collector for residential buildings. International Journal of Green Energy 18 (6):615–23. doi:10.1080/15435075.2021.1875468.
  • Choi, S. H., D. Kee Sohn, and K. Han Seo. 2023. Experimental study on PVT − PCM system performance using bubble-driven flow. International Communications in Heat and Mass Transfer 146 (June):106919. doi:10.1016/j.icheatmasstransfer.2023.106919.
  • Chow, T. T., G. Pei, K. F. Fong, Z. Lin, A. L. S. Chan, and J. Ji. 2009. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Applied Energy 86 (3):310–16. doi:10.1016/j.apenergy.2008.04.016.
  • Faddouli, A., H. Labrim, S. Fadili, A. Habchi, B. Hartiti, M. Benaissa, M. Hajji, E. Ntsoenzok, A. Benyoussef, and A. Benyoussef. 2019. Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a. Renewable Energy 147:2077–90. doi:10.1016/j.renene.2019.09.130.
  • Fu, Z., L. Yongwei, X. Liang, S. Lou, Z. Qiu, Z. Cheng, and Q. Zhu. 2021. Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs. Energy 228:120509. doi:10.1016/j.energy.2021.120509.
  • Guarracino, I., J. Freeman, A. Ramos, S. A. Kalogirou, N. J. Ekins-Daukes, and C. N. Markides. 2019. Systematic testing of hybrid PV-Thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions. Applied Energy 240 ( November 2018):1014–30. doi:10.1016/j.apenergy.2018.12.049.
  • Hasan, A., S. J. McCormack, M. J. Huang, and B. Norton. 2010. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy 84 (9):1601–12. doi:10.1016/j.solener.2010.06.010.
  • Hasan, A., J. Sarwar, H. Alnoman, and S. Abdelbaqi. 2017. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Solar Energy 146:417–29. doi:10.1016/j.solener.2017.01.070.
  • Ho, C. J., B. Tyng Jou, C. Ming Lai, and C. Yang Huang. 2013. Performance assessment of a BIPV integrated with a layer of water-saturated MEPCM. Energy and Buildings 67:322–33. doi:10.1016/j.enbuild.2013.08.035.
  • Huang, M. J., P. C. Eames, B. Norton, and N. J. Hewitt. 2011. Natural convection in an internally finned phase change material heat sink for the thermal Management of photovoltaics. Solar Energy Materials & Solar Cells 95 (7):1598–603. doi:10.1016/j.solmat.2011.01.008.
  • Jamar, A., Z. A. A. Majid, W. H. Azmi, M. Norhafana, and A. A. Razak. 2016. A review of water heating system for solar energy applications. International Communications in Heat and Mass Transfer 76:178–87. doi:10.1016/j.icheatmasstransfer.2016.05.028.
  • Karthikeyan, V., C. Sirisamphanwong, S. Sukchai, S. Kumar Sahoo, and T. Wongwuttanasatian. 2020. Reducing PV module temperature with radiation based PV module incorporating composite phase change material. Journal of Energy Storage 29 ( November 2019):101346. doi:10.1016/j.est.2020.101346.
  • Kazem, H. A., and M. T. Chaichan. 2015. Effect of humidity on photovoltaic performance based on experimental study. International Journal of Applied Engineering Research 10 (23):43572–77.
  • Kibria, M. A., R. Saidur, F. A. Al-Sulaiman, and A. A. Md Maniruzzaman. 2016. Development of a thermal model for a hybrid photovoltaic module and phase change materials storage integrated in buildings. Solar Energy 124:114–23. doi:10.1016/j.solener.2015.11.027.
  • Machniewicz, A., D. Knera, and D. Heim. 2015. Effect of transition temperature on efficiency of PV/PCM panels. Energy Procedia 78:1684–89. doi:10.1016/j.egypro.2015.11.257.
  • Maghrabie, H. M., A. S. A. Mohamed, A. M. Fahmy, and A. A. Abdel Samee. 2023. Performance enhancement of PV panels using Phase Change Material (PCM): An experimental implementation. Case Studies in Thermal Engineering 42 ( October 2022):102741. doi:10.1016/j.csite.2023.102741.
  • Maiti, S., S. Banerjee, K. Vyas, P. Patel, and P. K. Ghosh. 2011. Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Solar Energy 85 (9):1805–16. doi:10.1016/j.solener.2011.04.021.
  • Marudaipillai, S. K., B. Karuppudayar Ramaraj, R. Kumar Kottala, and M. Lakshmanan. 2023. Experimental study on thermal Management and performance improvement of solar PV panel cooling using form stable phase change material. Energy Sources, Part a Recovery, Utilization, & Environmental Effects 45 (1):160–77. doi:https://doi.org/10.1080/15567036.2020.1806409.
  • Maxwell, J. C. 1954. A Treatise on electricity and magnetism: By James Clerk Maxwell. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+treatise+on+electricity+and+magnetism+/+by+James+Clerk+Maxwell+,…#2.
  • Mays, A. E., R. Ammar, M. Hawa, M. Abou Akroush, F. Hachem, M. Khaled, and M. Ramadan. 2017. Improving Photovoltaic Panel Using Finned Plate of Aluminum. Energy Procedia 119:812–17. doi:10.1016/j.egypro.2017.07.103.
  • Ma, T., J. Zhao, and L. Zhenpeng. 2018. Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material. Applied Energy 228 (May):1147–58. doi:10.1016/j.apenergy.2018.06.145.
  • Muthoka, M. J., Z. Xuelai, and X. Xioafeng. 2017. Study on thermophysical properties of nanofluid based composite phase change material for low temperature application. Energy Procedia 142:3313–19. doi:10.1016/j.egypro.2017.12.463.
  • Pang, W., Y. Cui, Q. Zhang, and H. Yan. 2020. Enhanced electrical performance for heterojunction with intrinsic thin-layer solar cells based photovoltaic thermal system with aluminum collector. International Communications in Heat and Mass Transfer 116 (June):104705. doi:10.1016/j.icheatmasstransfer.2020.104705.
  • Papadopoulos, A. M., E. Giama, and S. Niz. 2017. Comprehensive Analysis and General Economic-Environmental Evaluation of Cooling Techniques for Photovoltaic Panels, Part I : Passive Cooling Techniques ˇ Etic. Energy Conversion and Management 149:334–54. doi:10.1016/j.enconman.2017.07.022.
  • Park, J., T. Kim, and S. Bok Leigh. 2014. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the Annual weather conditions. Solar Energy 105:561–74. doi:10.1016/j.solener.2014.04.020.
  • Putra, N., A. Fahrizal Sandi, B. Ariantara, N. Abdullah, and T. M. Indra Mahlia. 2020. Performance of Beeswax Phase Change Material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Studies in Thermal Engineering 21 (May):100655. doi:10.1016/j.csite.2020.100655.
  • Sardarabadi, M., M. Passandideh-Fard, and S. Zeinali Heris. 2014. Experimental investigation of the effects of silica/water nanofluid OnPV/T (photovoltaic thermal units). Energy 66:264–72. doi:10.1016/j.energy.2014.01.102.
  • Smith, C. J., P. M. Forster, and R. Crook. 2014. Global analysis of photovoltaic energy output enhanced by phase change material cooling. Applied Energy 126:21–28. doi:10.1016/j.apenergy.2014.03.083.
  • Sudalaiyandi, K., K. Alagar, R. Vignesh Kumar, V. J. Manoj Praveen, and P. Madhu. 2021. Performance and emission characteristics of diesel engine fueled with ternary blends of linseed and rubber seed oil biodiesel. Fuel 285 ( August 2020):119255. doi:10.1016/j.fuel.2020.119255.
  • Swain, A., and R. Kanta Sarangi. 2021. “Cooling: An overview,” no. January. doi:10.1007/978-981-15-7831-1.
  • Swinbank, W. C. 1963. Long‐wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society 89 (381):339–48. doi:10.1002/qj.49708938105.
  • Szajding, A., M. Kuta, A. Cebo-Rudnicka, and M. Rywotycki. 2023. Analysis of work of a thermal energy storage with a Phase Change Material (PCM) charged with electric heaters from a photovoltaic installation. International Communications in Heat and Mass Transfer 140 ( December 2022):106547. doi:https://doi.org/10.1016/j.icheatmasstransfer.2022.106547.
  • Vajjha, R. S., and D. K. Das. 2009. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer 52 (21–22):4675–82. doi:10.1016/j.ijheatmasstransfer.2009.06.027.
  • Wen, R., X. Zhu, C. Yang, Z. Sun, L. Zhang, X. Youguo, J. Qiao, W. Xiaowen, X. Min, and Z. Huang. 2022. A novel composite phase change material from lauric acid, nano-cu and attapulgite: Preparation, characterization and thermal conductivity enhancement. Journal of Energy Storage 46 (January):103921. doi:10.1016/j.est.2021.103921.
  • Zhou, Y., X. Liu, and G. Zhang. 2017. ScienceDirect ScienceDirect performance of buildings integrated with a photovoltaic – thermal collector and phase change materials. Procedia Engineering 205:1337–43. doi:10.1016/j.proeng.2017.10.109.
  • Zondag, H. A., D. W. de Vries, A. A. van Steenhoven, Helden van, W. G. J., and Zolingen van, R. J. C. 1999. Thermal and electrical yield of a combi-panel. In Proceedings of ISES World Congress, 96–101. Vol. 3. Jerusalem.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.