104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of CaO addition on the reactivity and reaction kinetics of coke

, , , , , , & show all
Pages 543-558 | Received 22 Jun 2023, Accepted 09 Nov 2023, Published online: 30 Nov 2023

References

  • Cheng, H., Y. H. Liang, R. Guo, Z. Sun, Q. Wang, Q. Xie, and J. Wang. 2021. Effects of solution loss degree, reaction temperature, and high temperature heating on the thermal properties of metallurgical cokes. Fuel 283 (1):1–11. doi:10.1016/j.fuel.2020.118936.
  • Chen, L., Z. J. Zhou, X. Liu, S. Yuan, and F.C. Wang. 2012. Effect of microstructure of rapid pyrolysis char on its gasification reactivity. Journal of Fuel Chemistry & Technology 40 (6):648–54 doi:10.1007/s11783-011-0280-z.
  • Cui, P., Z. F. Qian, and J. H. Yang. 1999. Study on experimental conditions of coke micro-strength and structural strength. Research on Iron and Steel 4:3–10.
  • GB/T 4000-2017. 2017. Test method for reactivity and strength after reaction coke. Beijing: Standards Press of China.
  • Guo, W. T., Q. G. Xue, Y. L. Liu, Z. Guo, X. She, J. Wang, Q. Zhao, and X. An. 2015. Kinetic analysis of gasification reaction of coke with CO2 or H2O. International Journal of Hydrogen Energy 40 (39):13306–13. doi:10.1016/j.ijhydene.2015.07.048.
  • Guo, H., and J. L. Zhang. 2009. Effect of alkali earth metal compounds on coke reactivity. Iron & Steel 44 (2):15–19.
  • Gupta, S., Z. Ye, B.-C. Kim, O. Kerkkonen, R. Kanniala, and V. Sahajwalla. 2014. Mineralogy and reactivity of cokes in a working blast furnace. Fuel Processing Technology 117:30–37. doi:10.1016/j.fuproc.2013.02.009.
  • Higuchi, K., S. Nomura, K. Kunitomo, H. Yokoyama, and M. Naito. 2011. Enhancement of low-temperature gasification and reduction by using iron-coke in laboratory scale tests. ISIJ International 51 (8):1308. doi:10.2355/isijinternational.51.1308.
  • Huang, J., L. Tao, W. Tie, Z. Li, Q. Wang, and Z. Liu. 2020. Transport properties of CO 2 in different reactivity coke solution loss reaction Based on Stefan Flow Theory. ACS Omega 5 (41):26817–28. doi:10.1021/acsomega.0c03913.
  • Huang, Z., and X. Xie. 2021. Energy revolution under vision of carbon neutrality. Bulletin of the Chinese Academy of Sciences 36 (9):1010–18.
  • Jayasekara, A. S., B. J. Monaghan, and R. J. Longbottom. 2016. Dispersion of lime in coke analogue and its effect on gasification in CO2. Fuel 182:73–79. doi:10.1016/j.fuel.2016.05.091.
  • Kong, D. W., Z. JL, and G. BX. 2011. Study on reactivity of Coke in blast furnace mass belt. Iron & Steel 46 (4):15–18.
  • Lan, C. C., S. H. Zhang, and R. Liu. 2022. Effect of K(g) on kinetics of coke gasification at high temperature in N2-CO-CO2-H2O atmosphere. China Metallurgy 32 (7):12–19.
  • Li, K., H. Li, M. Sun, J. Zhang, H. Zhang, S. Ren, and M. Barati. 2019. Atomic-Scale Understanding about Coke Carbon Structural Evolution by Experimental Characterization and ReaxFF Molecular Dynamics. Molecular Dynamics[j]. Energy & Fuels 33 (11):10941–52. doi:10.1021/acs.energyfuels.9b03154.
  • Li, P., Q. Yu, H. Xie, Q. Qin, and K. Wang. 2013. CO 2 gasification rate analysis of Datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a Chemical reaction. Energy & Fuels 27 (8):4810–17. doi:10.1021/ef4009554.
  • Monaghan, B. J., M. W. Chapman, and S. A. Nightingale. 2010. Carbon transfer in the lower zone of a blast furnace. Steel Research International 81 (10):829–33. doi:10.1002/srin.201000143.
  • Naito, M., A. Okamoto, K. Yamaguchi, T. YAMAGUCHI, and Y. INOUE. 2001. Improvement of blast furnace reaction efficiency by use of high reactivity coke. Tetsu-To-Hagane 87 (5):357–64. doi:10.2355/tetsutohagane1955.87.5_357.
  • Naito, M., A. Okamoto, K. Yamaguchi, Yamaguchi, T., and Inoue, Y. 2006. Improvement of blast furnace reaction efficiency by temperature control of thermal reserve zone. Nippon Steel Technical Report 94:103–08.
  • Nomura, S., H. Ayukawa, H. Kitaguchi, T. TAHARA, S. MATSUZAKI, M. NAITO, S. KOIZUMI, Y. OGATA, T. NAKAYAMA, and T. ABE. 2005. Improvement in blast furnace reaction efficiency through the use of highly reactive calcium rich coke. ISIJ International 45 (3):316–24. doi:10.2355/isijinternational.45.316.
  • Nomura, S., H. Terashima, E. Sato, and M. Naito. 2007. Some fundamental aspects of highly reactive iron coke production. ISIJ International 47 (6):823–30. doi:10.2355/isijinternational.47.823.
  • OZAWA, T. 1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38 (11):1881–86. doi:10.1246/bcsj.38.1881.
  • Qu, Y. L., N. Xing, W. Huang, et al. 2022. Current situation, existing problems and countermeasures of energy conservation and carbon reduction in China’s iron and steel industry. Metallurgical Economics and Management (1):10–1+15.
  • Škvára, F., and J. J. Šesták. 1975. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. Journal of Thermal Analysis 8 (3):477–89. doi:10.1007/BF01910127.
  • Sun, Y., Y. Han, X. Wei, and P. Gao. 2016. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. Journal of Thermal Analysis and Calorimetry 123 (1):703–15. doi:10.1007/s10973-015-4863-y.
  • Sun, L., Q. Wang, and R. Guo. 2012. Analysis on coke reactivity and blast furnace smelting. Fuel & Chemical Industry 43 (6):1–9.
  • Wang, G. G., S. Ren, J. L. Zhang, X. Ning, W. Liang, N. Zhang, and C. Wang. 2020. Influence mechanism of alkali metals on CO2 gasification properties of metallurgical coke. Chemical Engineering Journal 387 (C):1–13. doi:10.1016/j.cej.2020.124093.
  • Wang, P., Y. Q. Zhang, J. X. Li, Long, H. M., Meng, Q. M., and Yu, S. C 2016. Effects of CO2 and H2O on solution loss reaction of coke. The Chinese Journal of Process Engineering 16 (1):138–43.
  • Wang, G., H. Q. Zhang, and B. X. Su. 2021. Current situation and prospect of carbon emission reduction in iron and steel industry. Chemical Minerals and Processing 50 (12):55–64.
  • Wang, G. W., J. L. Zhang, G. H. Zhang, X. Ning, X. Li, Z. Liu, and J. Guo. 2017. Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends. Energy 131:27–40. doi:10.1016/j.energy.2017.05.023.
  • Wu, S. Y. 2007. Study on physicochemical properties and high-temperature gasification reaction characteristics of different coke [D]. East China University of Science and Technology.
  • Xu, R. S., B. W. Dai, W. Wang, J. Schenk, and Z. Xue. 2018. Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking. Fuel Processing Technology 173:11–20. doi:10.1016/j.fuproc.2018.01.006.
  • Xu, J. J., H. Zuo, G. W. Wang, J. Zhang, K. Guo, and W. Liang. 2019. Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM). Applied Thermal Engineering 152:605–14. doi:10.1016/j.applthermaleng.2019.02.104.
  • Yang, Z., M. Gao, Y. Wang, Y. Bai, and F. Li. 2017. Identification for the behavior of maximum reaction rate during the initial stage of coal char gasification. Journal of Thermal Analysis and Calorimetry 128 (2):1183–94. doi:10.1007/s10973-016-6006-5.
  • Zhao, R. T., W. Q. Liu, J. S. Wei, Y. Y. Guo, L. C. Wang, and P. Yang. 2021. Temperature field acquisition and data analysis of coke oven. Journal of Physics: Conference Series 1887 (1):012010. doi:10.1088/1742-6596/1887/1/012010.
  • Zou, C., S. Li, H. Wu, Y. She, M. Ren, W. Wang, and R. Shi. 2022. Isothermal and non-isothermal CO2 gasification kinetics of charging coke and raceway coke used in a blast furnace.Journal of thermal analysis and Calorimetry. Journal of Thermal Analysis and Calorimetry 147 (24):14437–48. doi:10.1007/s10973-022-11746-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.