75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation minimization for different types of heat exchangers using nanofluids

ORCID Icon, ORCID Icon &
Pages 1403-1418 | Received 10 Apr 2023, Accepted 20 Dec 2023, Published online: 11 Jan 2024

References

  • Afshari, F., A. Sözen, A. Khanlari, and A. D. Tuncer. 2021. Heat transfer enhancement of finned shell and tube heat exchanger using Fe2O3/water nanofluid. Journal of Central South University 28 (11):3297–309. doi:10.1007/s11771-021-4856-x.
  • Bahiraei, M., and A. Monavari. 2022. Irreversibility characteristics of a mini shell and tube heat exchanger operating with a nanofluid considering effects of fins and nanoparticle shape. Powder Technology 398:117117. doi:10.1016/j.powtec.2022.117117.
  • Bellahcene, L., D. Sahel, and A. Yousfi. 2021. Numerical study of shell and tube heat exchanger performance enhancement using nanofluids and baffling technique. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 80 (2):42–55. doi:10.37934/ARFMTS.80.2.4255.
  • Cengel, Y., and J. Ghajar Afshin. 2014. Heat and mass transfer: Fundamentals and applications. 5th ed. New York, NY, USA: McGraw-Hill Professional.
  • Choi, S. U. S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED 231 (January 1995):99–105.
  • Drew, D., and S. Passman. 1999. Theory of multicomponent fluids. Springer-Verlag New York. doi:10.1007/b97678.
  • Esfahani, M. R., and E. M. Languri. 2017. Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Experimental Thermal and Fluid Science 83:100–06. doi:10.1016/j.expthermflusci.2016.12.004.
  • Esmaeili Sany, A. R., M. H. Saidi, and J. Neyestani. 2010. Experimental prediction of nusselt number and coolant heat transfer coefficient in compact heat exchanger performed with ε-NTU method. The Journal of Engine Research 18:62–70.
  • Ferhi, M., R. Djebali, F. Mebarek-Oudina, N. H. Abu-Hamdeh, and S. Abboudi. 2022. Magnetohydrodynamic free convection through entropy generation scrutiny of eco-friendly nanoliquid in a divided L-Shaped heat exchanger with lattice Boltzmann method simulation. Journal of Nanofluids 11 (1):99–112. doi:10.1166/jon.2022.1819.
  • Gelis, K., K. Ozbek, O. Ozyurt, and A. Naci Celik. 2023. Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach. Applied Thermal Engineering 219 (PB):119609. doi:10.1016/j.applthermaleng.2022.119609.
  • Gupta, S. K., H. Verma, and N. Yadav. 2022. A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy. Materials Today: Proceedings 54:579–89. doi:10.1016/j.matpr.2021.09.455.
  • Hasan, M. J., and A. A. Bhuiyan. 2022. Investigation of thermal performance and entropy generation in a helical heat exchanger with multiple rib profiles using Al2O3-water nanofluid. Case Studies in Thermal Engineering 40:102514. doi:10.1016/J.CSITE.2022.102514.
  • Javadi, F. S., S. Sadeghipour, R. Saidur, G. BoroumandJazi, B. Rahmati, M. M. Elias, and M. R. Sohel. 2013. The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. International Communications in Heat and Mass Transfer 44:58–63. doi:10.1016/j.icheatmasstransfer.2013.03.017.
  • Khetib, Y., H. M. Abo-Dief, A. K. Alanazi, Z. Said, S. Memon, S. Bhattacharyya, and M. Sharifpur. 2022. The influence of forced convective heat transfer on hybrid nanofluid flow in a heat exchanger with elliptical corrugated tubes: Numerical analyses and optimization. Applied Sciences (Switzerland) 12 (6):2780. doi:10.3390/app12062780.
  • Luo, J. Q., H. Ren, M. Z. Liu, P. F. Fang, and D. X. Xiang. 2018. European versus Asian differences for the associations between paraoxonase-1 genetic polymorphisms and susceptibility to type 2 diabetes mellitus. Journal of Cellular and Molecular Medicine 22 (3):1720–32. doi:10.1111/jcmm.13453.
  • Mazaheri, N., M. Bahiraei, and S. Razi. 2022. Second law performance of a novel four-layer microchannel heat exchanger operating with nanofluid through a two-phase simulation. Powder Technology 396:673–88. doi:10.1016/j.powtec.2021.11.021.
  • Ogulata, R. T., and F. Doba. 1998. Experiments and entropy generation minimization analysis of a cross-flow heat exchanger. International Journal of Heat and Mass Transfer 41 (2):373–81. doi:10.1016/S0017-9310(97)00129-4.
  • Ozbek, K., K. Gelis, and O. Ozyurt. 2022. Optimization of external wall insulation thickness in buildings using response surface methodology. International Journal of Energy and Environmental Engineering 13 (4):1367–81. doi:10.1007/s40095-022-00490-9.
  • Özenbiner, Ö., and A. Yurddaş. 2022. Numerical analysis of heat transfer of a nanofluid counter-flow heat exchanger. International Communications in Heat and Mass Transfer 137:137. doi:10.1016/j.icheatmasstransfer.2022.106306.
  • Qiu, L., N. Zhu, Y. Feng, E. E. Michaelides, G. Żyła, D. Jing, X. Zhang, P. M. Norris, C. N. Markides, and O. Mahian. 2020. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports 843:1–81. doi:10.1016/j.physrep.2019.12.001.
  • Rashidi, M. M., I. Mahariq, M. Alhuyi Nazari, O. Accouche, and M. M. Bhatti. 2022. Comprehensive review on exergy analysis of shell and tube heat exchangers. Journal of Thermal Analysis and Calorimetry 147 (22):12301–11. doi:10.1007/s10973-022-11478-2.
  • Tay, N. H. S., M. Belusko, A. Castell, L. F. Cabeza, and F. Bruno. 2014. An effectiveness-NTU technique for characterising a finned tubes PCM system using a CFD model. Applied Energy 131:377–85. doi:10.1016/j.apenergy.2014.06.041.
  • Wang, D., H. A. Dhahad, S. F. Almojil, A. I. Almohana, A. F. Alali, K. Sharma, and M. A. Shamseldin. 2023. Two-phase simulation and environmental consideration of thermo-hydraulic behavior and entropy production of water/TiO2-SWCNT hybrid nanofluid in a U-shaped heat exchanger equipped with needle fins of different sizes. Engineering Analysis with Boundary Elements 146:928–38. doi:10.1016/J.ENGANABOUND.2022.11.006.
  • Western Michigan University. 1999. Shell-and-Tube Heat Exchangers. Accessed February 15, 2023. https://studylib.net/doc/18279084/5.1-shell-and-tube-heat-exchangers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.