424
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The myth of hazardous-to-wealth concept: transformation of marine microplastics to pyrolysis gas

ORCID Icon &
Pages 1701-1709 | Received 08 Aug 2023, Accepted 04 Jan 2024, Published online: 21 Jan 2024

References

  • Al-Azzawi, M. S. M., S. Kefer, J. Weißer, J. Reichel, C. Schwaller, K. Glas, O. Knoop, and J. E. Drewes. 2020. Validation of sample preparation methods for microplastic analysis in wastewater matrices—reproducibility and standardization. Water 12(9):2445. 10.3390/w12092445.
  • Boshoff, B. J., T. B. Robinson, and S. von der Heyden. 2023. The role of seagrass meadows in the accumulation of microplastics: Insights from a South African estuary. Marine Pollution Bulletin 186: 114403. January 1. doi:10.1016/j.marpolbul.2022.114403.
  • Gale, M., P. M. Nguyen, and K. L. Gilliard-AbdulAziz. 2023. Synergistic and antagonistic effects of the co-pyrolysis of plastics and corn stover to produce char and activated carbon. American Chemical Society Omega 8 (1):380–90. January 10. doi:10.1021/acsomega.2c04815.
  • Gan, D. K. W., A. C. M. Loy, B. L. F. Chin, S. Yusup, P. Unrean, E. Rianawati, and M. N. Acda. 2018. Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts. Bioresource Technology 265: 180–90. October 1. doi:10.1016/j.biortech.2018.06.003.
  • Gontard, N., G. David, A. Guilbert, and J. Sohn. 2022. Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nature Sustainability 5 (6):472–78. June 1. doi:10.1038/s41893-022-00863-2.
  • Hasanzadeh, R., P. Mojaver, S. Khalilarya, T. Azdast, A. Chitsaz, and M. Mojaver. 2022. Polyurethane foam waste upcycling into an efficient and low pollutant gasification syngas, (in eng). Polymers (Basel) 14 (22):4938. November 15. doi:10.3390/polym14224938.
  • Hu, Q., Z. Tang, D. Yao, H. Yang, J. Shao, and H. Chen. 2020. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. Journal of Cleaner Production 260: 121102. July 1. doi:10.1016/j.jclepro.2020.121102.
  • Inayat, A., L. Rocha-Meneses, C. Ghenai, M. Abdallah, A. Shanableh, K. Al-Ali, A. Alghfeli, and R. Alsuwaidi. 2022. Co-pyrolysis for bio-oil production via fixed bed reactor using date seeds and plastic waste as biomass. Case Studies in Thermal Engineering 31: 101841. March 1. doi:10.1016/j.csite.2022.101841.
  • Koelmans, A. A., P. E. Redondo-Hasselerharm, N. H. M. Nor, V. N. de Ruijter, S. M. Mintenig, and M. Kooi. 2022. Risk assessment of microplastic particles. Nature Reviews Materials 7 (2):138–52. February 1. doi:10.1038/s41578-021-00411-y.
  • Lim, X. 2021. Microplastics are everywhere - but are they harmful?, (in eng). Nature 593 (7857):22–25. May. 10.1038/d41586-021-01143-3
  • Loy, A. C. M., S. Yusup, M. K. Lam, B. L. F. Chin, M. Shahbaz, A. Yamamoto, and M. N. Acda. 2018. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Conversion and Management 165: 541–54. June 1. doi:10.1016/j.enconman.2018.03.063.
  • Miandad, R., M. Rehan, M. A. Barakat, A. S. Aburiazaiza, H. Khan, I. M. I. Ismail, J. Dhavamani, J. Gardy, A. Hassanpour, A.-S. Nizami, et al. 2019. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries, (in English). Frontiers in Energy Research 7. March 19. doi:10.3389/fenrg.2019.00027.
  • Minh Loy, A. C., S. Yusup, B. L. Fui Chin, D. K. Wai Gan, M. Shahbaz, M. N. Acda, P. Unrean, and E. Rianawati. 2018. Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis. Journal of Cleaner Production 197: 1231–43. October 1. doi:10.1016/j.jclepro.2018.06.245.
  • Mojaver, M., T. Azdast, and R. Hasanzadeh. 2021. Assessments of key features and Taguchi analysis on hydrogen rich syngas production via gasification of polyethylene, polypropylene, polycarbonate and polyethylene terephthalate wastes. International Journal of Hydrogen Energy 46 (58):29846–57. August 23. doi:10.1016/j.ijhydene.2021.06.161.
  • Mumbach, G. D., J. L. F. Alves, J. C. G. Da Silva, R. F. De Sena, C. Marangoni, R. A. F. Machado, and A. Bolzan. 2019. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Conversion and Management 200:112031. November 15. doi:10.1016/j.enconman.2019.112031.
  • Ni, B.-J., Z.-R. Zhu, W.-H. Li, X. Yan, W. Wei, Q. Xu, Z. Xia, X. Dai, and J. Sun. 2020. Microplastics mitigation in sewage sludge through pyrolysis: The role of pyrolysis temperature. Environmental Science & Technology Letters 7 (12):961–67. December 8. doi:10.1021/acs.estlett.0c00740.
  • Nunes, B. Z., Y. Huang, V. V. Ribeiro, S. Wu, H. Holbech, L. B. Moreira, E. G. Xu, and I. B. Castro. 2023. Microplastic contamination in seawater across global marine protected areas boundaries. Environmental Pollution 316: 120692. January 1. doi:10.1016/j.envpol.2022.120692.
  • Picó, Y., and D. Barceló. 2020. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics. TrAC Trends in Analytical Chemistry 130: 115964. September 1. doi:10.1016/j.trac.2020.115964.
  • Supriyanto, P. Y., T. Richards, and T. Richards. 2021. Gaseous products from primary reactions of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis 158: 105248. August 1. doi:10.1016/j.jaap.2021.105248.
  • Tang, K. H. D., S. S. M. Lock, P.-S. Yap, K. W. Cheah, Y. H. Chan, C. L. Yiin, A. Z. E. Ku, A. C. M. Loy, B. L. F. Chin, and Y. H. Chai. 2022. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. Science of the Total Environment 832: 154868. August 1. doi:10.1016/j.scitotenv.2022.154868.
  • Tian, Y., W. Zuo, Z. Ren, and D. Chen. 2011. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresource Technology 102 (2):2053–61. January 1. doi:10.1016/j.biortech.2010.09.082.
  • Unsworth, R. K. F., A. Higgs, B. Walter, L. C. Cullen-Unsworth, I. Inman, and B. L. Jones. 2021. Canopy accumulation: Are seagrass meadows a sink of microplastics? Oceans 2 (1):162–78. [Online]. https://www.mdpi.com/2673-1924/2/1/10.
  • Wijesekara, D. A., P. Sargent, C. J. Ennis, and D. Hughes. 2021. Prospects of using chars derived from mixed post waste plastic pyrolysis in civil engineering applications. Journal of Cleaner Production 317: 128212. October 1. doi:10.1016/j.jclepro.2021.128212.
  • Yap, T. L., A. C. M. Loy, B. L. F. Chin, J. Y. Lim, H. Alhamzi, Y. H. Chai, C. L. Yiin, K. W. Cheah, M. X. J. Wee, M. K. Lam, et al. 2022. Synergistic effects of catalytic co-pyrolysis chlorella vulgaris and polyethylene mixtures using artificial neuron network: Thermodynamic and empirical kinetic analyses. Journal of Environmental Chemical Engineering 10 (3): 107391.1 June. doi:10.1016/j.jece.2022.107391.
  • Yu, J., P. Wang, F. Ni, J. Cizdziel, D. Wu, Q. Zhao, and Y. Zhou. 2019. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Marine Pollution Bulletin 145: 153–60. August 1. doi:10.1016/j.marpolbul.2019.05.037.