153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

ZnCl2-KOH modulation of biomass-derived porous carbon for supercapacitors

, ORCID Icon, & ORCID Icon
Pages 2212-2222 | Received 17 Nov 2023, Accepted 05 Jan 2024, Published online: 23 Jan 2024

References

  • Braghiroli, F. L., V. Fierro, A. Szczurek, N. Stein, J. Parmentier, and A. Celzard. 2015. Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors. Carbon NY 90:63–74. doi:10.1016/j.carbon.2015.03.038.
  • Cai, X., Y. Xiao, and W. Sun. 2022. Pore-size effect of activated carbons on the electrochemical performances of symmetric supercapacitors under compression. Journal of Energy Storage 55:105438. doi:10.1016/j.est.2022.105438.
  • Cristóbal, J., C. T. Matos, J. P. Aurambout, S. Manfredi, and B. Kavalov. 2016. Environmental sustainability assessment of bioeconomy value chains. Biomass and Bioenergy 89:159–71. doi:10.1016/j.biombioe.2016.02.002.
  • Cui, X., Y. Jiang, Z. He, Z. Liu, X. Yang, J. Wan, Y. Liu, and F. Ma. 2023. Preparation of tank-like resin-derived porous carbon sphere for supercapacitor: The influence of KOH activator and activation temperature on structure and performance. Diamond and Related Materials 136:110054. doi:10.1016/j.diamond.2023.110054.
  • Huang, S., D. Yang, W. Zhang, X. Qiu, Q. Li, and C. Li. 2021. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery. Microporous and Mesoporous Materials 317:111004. doi:10.1016/j.micromeso.2021.111004.
  • Jia, X., F. Guo, Y. Zhan, H. Zhou, X. Jiang, and L. Qian. 2020. Synthesis of porous carbon materials with mesoporous channels from sargassum as electrode materials for supercapacitors. Journal of Electroanalytical Chemistry 873:114353. doi:10.1016/j.jelechem.2020.114353.
  • Liou, T. H. 2010. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Journal of Chemical Engineering 158 (2):129–42. doi:10.1016/j.cej.2009.12.016.
  • Lu, B., Z. Xiao, H. Zhu, W. Xiao, W. Wu, and D. Wang. 2015. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. Journal of Power Sources 298:74–82. doi:10.1016/j.jpowsour.2015.08.047.
  • Ma, L., J. L. Goldfarb, J. Song, C. Chang, and Q. Ma. 2022. Enhancing cleaner biomass-coal co-combustion by pretreatment of wheat straw via washing versus hydrothermal carbonization. Journal of Cleaner Production 366:132991. doi:10.1016/j.jclepro.2022.132991.
  • Mandal, S., S. Ishak, R. J. Adnin, D. E. Lee, and T. Park. 2023. An approach to utilize date seeds biochar as waste material for thermal energy storage applications. Journal of Energy Storage 68:107739. doi:10.1016/j.est.2023.107739.
  • Mo, Y., J. Du, H. Lv, Y. Zhang, and A. Chen. 2021. N-doped mesoporous carbon nanosheets for supercapacitors with high performance. Diamond and Related Materials 111:108206. doi:10.1016/j.diamond.2020.108206.
  • Pan, H., X. Zhou, S. Xie, Z. Du, G. Li, C. Zhang, Y. Luo, and X. Zhang. 2022. Selective production of monocyclic aromatic hydrocarbon from agricultural waste wheat straw for aviation fuel using Ni/ZSM-5 catalyst. Biomass & bioenergy 165:106592. doi:10.1016/j.biombioe.2022.106592.
  • Pedro Aguiar dos Santos, J., C. Pagan, R. Vicentini, R. F. Teófilo, R. Beraldo, L. M. Da Silva, and H. Zanin. 2023. Ion dynamics into different pore size distributions in supercapacitors under compression. Journal of Energy Chemistry 80:110–19. doi:10.1016/j.jechem.2022.12.063.
  • Pimentel, C. H., L. Díaz-Fernández, D. Gómez-Díaz, M. S. Freire, and J. González-Álvarez. 2023. Separation of CO2 using biochar and KOH and ZnCl2 activated carbons derived from pine sawdust. Journal of Environmental Chemical Engineering 11 (6):111378. doi:10.1016/j.jece.2023.111378.
  • Rawat, S., C. T. Wang, C. H. Lay, S. Hotha, and T. Bhaskar. 2023. Sustainable biochar for advanced electrochemical/energy storage applications. Journal of Energy Storage 63: 107115. doi:10.1016/j.est.2023.107115.
  • Song, M., Y. Zhou, X. Ren, J. Wan, Y. Du, G. Wu, and F. Ma. 2019. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. Journal of Colloid and Interface Science 535:276–86. doi:10.1016/j.jcis.2018.09.055.
  • Wang, D., G. Fang, T. Xue, J. Ma, and G. Geng. 2016. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. Journal of Power Sources 307 (Mar):401–09. doi:10.1016/j.jpowsour.2016.01.009.
  • Wang, J., and S. Kaskel. 2012. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry 22 (45):23710–25. doi:10.1039/c2jm34066f.
  • Wang, K., and J. W. Tester. 2023. Sustainable management of unavoidable biomass wastes. Green Energy and Resources 1 (1):100005. doi:10.1016/j.gerr.2023.100005.
  • Wen, Y., S. Wang, Z. Shi, I. Nuran Zaini, L. Niedzwiecki, C. Aragon-Briceno, C. Tang, H. Pawlak-Kruczek, P. G. Jönsson, and W. Yang. 2022. H2-rich syngas production from pyrolysis of agricultural waste digestate coupled with the hydrothermal carbonization process. Energy Conversion and Management 269:116101. doi:10.1016/j.enconman.2022.116101.
  • Xia, K., Q. Gao, J. Jiang, and J. Hu. 2008. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon NY 46 (13):1718–26. doi:10.1016/j.carbon.2008.07.018.
  • Xu, R. H., P. P. Ma, G. F. Liu, Y. Qiao, R. Y. Hu, L. Y. Liu, M. Demir, and G. H. Jiang. 2023. Dual-phase coexistence design and advanced electrochemical performance of Cu2MoS4 electrode materials for supercapacitor application. Energy and Fuels 37 (8):6158–67. doi:10.1021/acs.energyfuels.2c04273.
  • Yan, B., J. Zheng, L. Feng, Q. Zhang, C. Zhang, Y. Ding, J. Han, S. Jiang, and S. He. 2023. Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials. Materials & Design 229: 111904. doi:10.1016/j.matdes.2023.111904.
  • Yao, H., J. Zhang, J. Du, B. Li, S. Zong, and A. Chen. 2022. Carbon spheres prepared by amino acid-catalyzed resorcinol-formaldehyde polymerization for supercapacitors. Journal of Alloys and Compounds 926:166948. doi:10.1016/j.jallcom.2022.166948.
  • Yuan, C., M. Chen, K. Zhu, J. Ni, S. Wang, B. Cao, S. Zhong, J. Zhou, and S. Wang. 2022. Facile synthesis of nitrogen-doped interconnected porous carbons derived from reed and chlorella for high-performance supercapacitors. Fuel Processing Technology 238:107466. doi:10.1016/j.fuproc.2022.107466.
  • Zhang, S., and N. Pan. 2015. Supercapacitors performance evaluation. Advanced Energy Materials 5 (6). doi:10.1002/aenm.201401401.
  • Zhao, W., J. Yang, Y. Shang, B. Yang, D. Han, G. Du, Q. Su, S. Ding, B. Xu, A. Cao, et al. 2023. 3D carbon nanotube-mesoporous carbon sponge with short pore channels for high-power lithium-ion capacitor cathodes. Carbon NY 203:479–89. doi:10.1016/j.carbon.2022.12.009.
  • Zhao, X., P. Gao, B. Shen, X. Wang, T. Yue, and Z. Han. 2023. Recent advances in lignin-derived mesoporous carbon based-on template methods. Renewable and Sustainable Energy Reviews 188: 113808. doi:10.1016/j.rser.2023.113808.
  • Zuo, W., S. Wang, Y. Zhou, S. Ma, W. Yin, Y. Shan, and X. Wang. 2023. Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils. Science of the Total Environment 863:160998. doi:10.1016/j.scitotenv.2022.160998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.