48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New independent daily global solar radiation estimation models based on the day number of the year

ORCID Icon, &
Pages 3136-3164 | Received 17 May 2023, Accepted 26 Jan 2024, Published online: 22 Feb 2024

References

  • Abanda, F. H. 2012. Renewable energy sources in Cameroon: Potentials, benefits and enabling environment. Renewable and Sustainable Energy Reviews 16 (7):4557–62. doi:10.1016/j.rser.2012.04.011.
  • Agbulut, Ü., A. Gürel Etem, and Y. Biçen. 2021. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews 135 (August 2020):110114. doi:10.1016/j.rser.2020.110114.
  • Ali, A., Z. E. Mohamed, and A. I. Shehata. 2016. Comparison of DMSP and SECS region-1 and region-2 ionospheric current boundary. Journal of Atmospheric and Solar-Terrestrial Physics 143-144:8–13. doi:10.1016/j.jastp.2016.09.011.
  • Al-Salaymeh, A. 2006. Modelling of global daily solar radiation on horizontal surfaces for Amman City. Emirates Journal for Engineering Research 11 (1):49–56. http://citeseerx.ist.psu.edu/viewdoc/downl.
  • Aoun, N., and K. Bouchouicha. 2017. Estimating daily global solar radiation by Day of the Year in Algeria. The European Physical Journal Plus 132 (5):1–12. doi:10.1140/epjp/i2017-11495-7.
  • Ayompe, L. M., and A. Duffy. 2013. An assessment of the energy generation Potential of photovoltaic systems in Cameroon using satellite-derived solar radiation datasets. Sustainable Energy Technologies and Assessments 7:257–64. doi:10.1016/j.seta.2013.10.002.
  • Besharat, F., A. A. Dehghan, and A. R. Faghih. 2013. Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21:798–821. doi:10.1016/j.rser.2012.12.043.
  • Bulut, H., and O. Bûyûkalaca. 2007. Simple model for the generation of daily global solar-radiation data in Turkey. Applied Energy 84 (5):477–91. doi:10.1016/j.apenergy.2006.10.003.
  • David, A., E. Joseph, N. Rene Ngwa, and N. Ayuketang Arreyndip. 2018. Global solar radiation of some regions of Cameroon using the linear angstrom model and non-linear polynomial relations: Part 2, sun-path diagrams, energy potential predictions and statistical validation. International Journal of Renewable Energy Research (IJRER) 8 (1):649–60. doi:10.20508/ijrer.v8i1.6558.
  • Gavin, H. P. 2022. The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems.
  • Gouda, S. G., Z. Hussein, S. Luo, and Q. Yuan. 2019. Model selection for accurate daily global solar radiation prediction in China. Journal of Cleaner Production 221:132–44. doi:10.1016/j.jclepro.2019.02.211.
  • Gouda, S. G., Z. Hussein, S. Luo, and Q. Yuan. 2020. Review of empirical solar radiation models for estimating global solar radiation of various climate zones of China. Progress in Physical Geography: Earth and Environment 44 (2):168–88. doi:10.1177/0309133319867213.
  • Huashan, L., M. Weibin, Y. Lian, and X. Wang. 2010. Estimating daily global solar radiation by day of year in China. Applied Energy 87 (10):3011–17. doi:10.1016/j.apenergy.2010.03.028.
  • Kaplanis, S., and E. Kaplani. 2007. A Model to predict expected mean and stochastic hourly global solar radiation I (h; nj) values. Renewable Energy 32 (8):1414–25. doi:10.1016/j.renene.2006.06.014.
  • Khorasanizadeh, H., and K. Mohammadi. 2013. Prediction of daily global solar radiation by Day of the Year in four cities located in the sunny regions of Iran. Energy Conversion and Management 76:385–92. doi:10.1016/j.enconman.2013.07.073.
  • Khorasanizadeh, H., K. Mohammadi, and M. Jalilvand. 2014. A statistical comparative study to demonstrate the merit of day of the year-based models for estimation of horizontal global solar radiation. Energy Conversion and Management 87:37–47. doi:10.1016/j.enconman.2014.06.086.
  • Kleniewska, M., D. Mitrowska, and M. Wasilewicz. 2020. Applied sciences estimating daily global solar radiation with no meteorological data in Poland. Applied Sciences 10 (3):778. doi:10.3390/app10030778.
  • Lan, Y., M. Zhang, L. Wang, W. Qin, D. Jiang, and J. Li. 2022. Variability of surface solar radiation under clear skies over Qinghai-Tibet Plateau: Role of aerosols and water vapor. Atmospheric Environment 287 (June):119286. doi:10.1016/j.atmosenv.2022.119286.
  • Lealea, T., and R. Tchinda. 2013. Estimation of diffuse solar radiation in the south of Cameroon. Journal of Energy Technologies and Policy 3 (6):32–42. https://www.academia.edu/download/31489513.
  • Lu, Y., L. Wang, C. Zhu, L. Zou, M. Zhang, and L. Feng. 2023a. Predicting surface solar radiation using a hybrid radiative transfer – machine learning model. Renewable and Sustainable Energy Reviews 173 (July 2022):113105. doi:10.1016/j.rser.2022.113105.
  • Lu, Y., R. Zhang, L. Wang, X. Su, M. Zhang, H. Li, S. Li, and J. Zhou. 2023b. Prediction of diffuse solar radiation by integrating radiative transfer model and machine-learning techniques. Science of the Total Environment 859 (November 2022):160269. doi:10.1016/j.scitotenv.2022.160269.
  • Mbiaké, R., A. Beya, M. Mfoumou, E. Ndjeuna, L. Fotso, E. TiekweTiekwe, J. Kaze, and C. Bobda. 2018. The relationship between global solar radiation and sunshine durations in Cameroon. Open Journal of Air Pollution 7(2):107–19. doi:10.4236/ojap.2018.72006.
  • Mboumboue, E., D. Njomo, M. Lamine, P. Alioune, M. Falilou, and A. Tossa, 2016. On the applicability of several conventional regression models for the estimation of solar global radiation component in Cameroon and Senegal Sub-Saharan tropical regions. Journal of Renewable and Sustainable Energy 8(2):025906. doi:10.1063/1.4947249.
  • Mobtaker, H. G., Y. Ajabshirchi, S. Faramarz, M. Matloobi, and M. Taki. 2016. Estimation of monthly mean daily global solar radiation in Tabriz using. Journal of Renewable and Environment 3 (3):21–30.
  • Morad, F. 2019. Non linear curve fitting. Mâlardalen University Sweden.
  • Muh, E., F. Tabet, and F. Tabet. 2017. ENERGY POLICIES in CAMEROON: A HOLISTIC OVERVIEW sustainable energy policies in Cameroon: A holistic overview. Renewable and Sustainable Energy Reviews 82:3420–29. November. doi:10.1016/j.rser.2017.10.049.
  • NASA. POWER | data access viewer. March 25, 2022. https://power.larc.nasa.gov/data-access-viewer/
  • Ndarwe, D., D. Bongue, D. Monkam, P. Moudi, N. Philippon, and C. A. KenfacK. 2019. Analysis of the Diurnal to seasonal variability of solar radiation in Douala, Cameroon. Theoretical and Applied Climatology 138 (1):249–61. doi:10.1007/s00704-019–02821.
  • Neba-Fabs, E. N., B. Norton, J. C. McVeigh, and S. D. Probert. 1988. Advances in solar energy technology: Proceedings of the Biennial Congress of the International Solar Energy Society Hamburg, Federal Republic of Germany, 13–18 September 1987 Solar radiation models for the cameroon. International Solar Energy Society. 10.1016/B978-0-08-034315-0.50704-7.
  • Prem, W., and J. O. Paz. 2011. Evaluation of various methods for estimating global solar radiation in the Southeastern United States. Journal of Applied Meteorology & Climatology 51 (5):972–85. doi:10.1175/JAMC-D-11-0141.1.
  • Qiu, T., L. Wang, Y. Lu, M. Zhang, W. Qin, S. Wang, and L. Wang. 2022. Potential assessment of photovoltaic power generation in China. Renewable and Sustainable Energy Reviews 154 (July 2021):111900. doi:10.1016/j.rser.2021.111900.
  • Quej, V. H., J. Almorox, M. Ibrakhimov, and L. Saito. 2016. Estimating daily global solar radiation by Day of the Year in six cities located in the Yucatán Peninsula, Mexico. Journal of Cleaner Production 141:75–82. doi:10.1016/j.jclepro.2016.09.062.
  • Teke, A., H. Ba, and Ö. Çelik. 2015. Evaluation and performance comparison of different models for the estimation of solar radiation. Renewable and Sustainable Energy Reviews 50:1097–107. doi:10.1016/j.rser.2015.05.049.
  • Tonsie Djiela, R. H., P. Tiam Kapen, and G. Tchuen. 2021. Wind energy of Cameroon by determining Weibull Parameters: Potential of a environmentally friendly energy. International Journal of Environmental Science and Technology 18 (8):2251–70. doi:10.1007/s13762-020-02962-z.
  • Wang, Z., M. Zhang, L. Wang, and W. Qin. 2022. A comprehensive research on the global all-sky surface solar radiation and its driving factors during 1980–2019. Atmospheric Research 265 (105870):105870. doi:10.1016/j.atmosres.2021.105870.
  • Wenceslas, Y., R. H. T. Djiela, F. C. V. Fohagui, and T. Ghislain. 2022. Comparative study of thirteen numerical methods for evaluating Weibull parameters for solar energy generation at ten selected locations in Cameroon. Cleaner Energy Systems 4:4. doi:10.1016/j.cles.2022.100047.
  • Yousuf, M. U., S. Muhammad, R. Hussain, and M. U. Yousuf. 2021. Performance evaluation of independent global solar radiation estimation models for different climatic zones : A case study estimation models for different climatic zones : A case study. Energy Sources Part A: Recovery, Utilization, and Environmental Effects (00):1–17. doi:10.1080/15567036.2021.1958955.
  • Zang, H., X. Qingshan, and H. Bian. 2012. Generation of typical solar radiation data for different climates of China. Energy 38 (1):236–48. doi:10.1016/j.energy.2011.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.