75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recycle process and industrial use of pyrolytic oil from waste tire pyrolysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5133-5150 | Received 22 Sep 2023, Accepted 21 Mar 2024, Published online: 03 Apr 2024

References

  • Altin, M., A. Koca, H. Solmaz, and E. Yilmaz. 2013. Türkiye ’ de Otomobillerden Kaynaklanan Lastik Atık Miktarının İncelenmesi Investgation of the Tyre Waste from Automobiles in Turkey, 51–56. doi: 10.2339/2013.16.2.
  • American, A. & Standard, N. D. 2003. 2700 standard test method for motor octane number and motor octane number of spark-ignition engine fuel. i 1–119
  • ASTM. 1997. D240: Standard test method for heat of combustion of liquid hydrocarbon fuels by bomb calorimeter. ASTM International.
  • ASTM. 2002. ASTM D93 standard test methods for flash point by pensky-martens closed cup tester. ASTM International.
  • ASTM. 2008a. ASTM D445 standard test method for kinematic viscosity of transparent and opaque liquids (the calculation of dynamic viscosity). Manual on Hydrocarbon Analysis 6th Edition 126–126–8. doi:10.1520/mnl10842m.
  • ASTM. 2008b. ASTM D4530: Standard test method for determination of carbon residue (micro method). Manual on Hydrocarbon Analysis 6th Edition 2: 700–700–5.
  • ASTM. 2008c. ASTM D664: Standard test method for acid number of petroleum products by Potentiometric Titration. Manual on Hydrocarbon Analysis, 6th Edition 159–159–7. doi:10.1520/mnl10848m.
  • ASTM. 2008d. ASTM D97 standard test method for pour point of petroleum products. Manual on Hydrocarbon Analysis 6th Edition 2: 87–87–8.
  • ASTM. 2011. D869-85: Standard test method for evaluating degree of settling of paint. ASTM International.
  • ASTM. 2019. ASTM D 2699: Standard test method for research octane number of spark-ignition engine fuel. ASTM International.
  • ASTM. 2022a. D6079-22 standard test method for evaluating lubricity of diesel fuels by the high-frequency reciprocating rig (HFRR). ASTM International.
  • ASTM. 2022b. D4052: Standard test method for density adn relatrive density of liquids by digital density meter. ASTM International.
  • ASTM. 2023. D613-05 Standard test method for cetane number of diesel fuel oil. ASTM International 14: 1–17.
  • Aylón, E., R. Navarro, M. V. Murillo, T. García, A. M. Mastral, and A. M. Mastral. 2010. Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management 30 (7):1220–24. doi:10.1016/j.wasman.2009.10.001.
  • BS EN 12662-2008.pdf.
  • BSI. 2020. Determination of the ignition quality of diesel fuels–cetane engine method (ISO 5165: 2017). Bs En Iso 5165:2020 Petroleum products 20.
  • CEN. 2013. DS/EN 590 automotive fuels–diesel–requirements and test methods. European Committee for Standardization.
  • CEN–European Committee for Standardization. 2008. European standard–en 228.
  • Cumali, İ., and H. Ayd. 2011. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Processing Technology 92 (5):1129–35. doi:10.1016/j.fuproc.2011.01.009.
  • Czajczyńska, D., R. Krzyżyńska, H. Jouhara, and N. Spencer. 2017. Use of pyrolytic gas from waste tire as a fuel: A review. Energy 134:1121–31. doi:10.1016/j.energy.2017.05.042.
  • DeLisi, J. 2018. ASTM D2624: Standard test methods for electrical conductivity of aviation and distillate fuels. 63rd Annual Business Aviation Safety Summit, BASS 2018 161–79. doi:10.5749/j.ctvthhd37.29.
  • Dick, D. T., O. Agboola, and A. O. Ayeni. 2020. Pyrolysis of waste tyre for high-quality fuel products: A review. AIMS Energy 8 (5):869–95. doi:10.3934/energy.2020.5.869.
  • EPA 5050. 1–9.
  • ETRMA. 2015. End-of-life tyre report. Prepared by European Tyre & Rubber Manufacturers’ Association. https://www.etrma.org/wp-content/uploads/2019/09/elt-report-v9a-final.pdf.
  • Fernández, A. M., C. Barriocanal, and R. Alvarez. 2012. Pyrolysis of a waste from the grinding of scrap tyres. Journal of Hazardous Materials 203–204:236–43. doi:10.1016/j.jhazmat.2011.12.014.
  • González-González, R. B., L. T. González, S. Iglesias-González E. González-González, S. O. Martinez-Chapa, M. Madou, M. M. Alvarez, A. Mendoza. 2020. Characterization of chemically activated pyrolytic carbon black derived from waste tires as a candidate for nanomaterial precursor. Nanomaterials 10 (11): 1–22. doi:10.3390/nano10112213.
  • Hooshmand, A., and N. Zandi-Atashbar. 2014. Fuel production based on catalytic pyrolysis of waste tires as an optimized model. Energy Conversion and Management 87:653–69. doi:10.1016/j.enconman.2014.07.033.
  • Islam, M. A., M. M. Rahman, K. Heimann, M. N. Nabi, Z. D. Ristovski, A. Dowell, G. Thomas, B. Feng, N. von Alvensleben, R. J. Brown, et al. 2015. Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel 143:351–60. doi:10.1016/j.fuel.2014.11.063.
  • ISO. 2003. ISO 2719: International standard ISO determination of flash point – pensky- martens closed cup method. 2002.
  • ISO. 2012. ISO 8754 International standard International standard–ISO 2062. Iso 2012: 16.
  • ISO 10307-2. 2009. International standard petroleum products – total sediment in residual fuel oils –. 2009.
  • ISO 12185. 1996. Crude petroleum and petroleum products – determination of density - oscillating U-tube method. International Standard 1996: 1–7.
  • ISO 3104. 2020. ISO 3104: Petroleum products-transparent and opaque liquids-determination of kinematic viscosity and calculation of dynamic viscosity. International Organization for Standardization 2020: 24.
  • Jahirul, M. I., F. M. Hossain, M. G. Rasul, and A. A. Chowdhury. 2021. A review on the thermochemical recycling of waste tyres to oil for automobile engine application. Energies (Basel) 14 (13):1–18. doi:10.3390/en14133837.
  • Jimoda, L. A., I. D. Sulaymon, A. O. Alade, and G. A. Adebayo. 2018. Assessment of environmental impact of open burning of scrap tyres on ambient air quality. International Journal of Environmental Science and Technology 15 (6):1323–30. doi:10.1007/s13762-017-1498-5.
  • Karagöz, M., Ü. Ağbulut, and S. Sarıdemir. 2020. Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines. Fuel 275:117844. doi:10.1016/j.fuel.2020.117844.
  • Karl, C., and F. Titration. 2003. ASTM D6304: Standard test method for determination of water in petroleum products, lubricating. American National Standard Institute 5:1–6.
  • Martínez, J. D., N. Puy, R. Murillo, T. García, M. V. Navarro, and A. M. Mastral. 2013. Waste tyre pyrolysis – a review. Renewable and Sustainable Energy Reviews 23:179–213. doi:10.1016/j.rser.2013.02.038.
  • Mikulski, M., M. Ambrosewicz-Walacik, J. Hunicz, and S. Nitkiewicz. 2021. Combustion engine applications of waste tyre pyrolytic oil. Progress in Energy and Combustion Science 85:100915. doi:10.1016/j.pecs.2021.100915.
  • Mohajerani, A., L. Burnett, J. V. Smith, S. Markovski, G. Rodwell, M. T. Rahman, H. Kurmus, M. Mirzababaei, A. Arulrajah, S. Horpibulsuk, et al. 2020. Resources conservation & recycling recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resources, Conservation and Recycling 155:104679. doi:10.1016/j.resconrec.2020.104679.
  • Mohamad, A., M. N. Amin, K. Khan, W. Ahmad, M. N. A. Al-Hashem, A. F. Deifalla, and A. Ahmad. 2022. Case studies in construction materials a worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review. Case Studies in Construction Materials 17:e01677. doi:10.1016/j.cscm.2022.e01677.
  • Products, F. C. C. 2012. Products and economics. doi:10.1016/B978-0-12-386965-4.00008-2.
  • Rodriguez, I. D. M., M. F. Laresgoiti, M. A. Cabrero, A. Torres, M. J. Chomón, and B. Caballero. 2001. Pyrolysis of scrap tyres. Fuel Processing Technology 72 (1):9–22. doi:10.1016/S0378-3820(01)00174-6.
  • Sathish, S., R. Nirmala, Y. -H. Ra, and R. Navamathavan. 2023. Factors influencing the pyrolysis products of waste tyres and its practical applications: A mini topical review. Journal of Material Cycles & Waste Management 25 (6):3117–31. doi:10.1007/s10163-023-01758-w.
  • Standard, I. 2007. Liquid petroleum products – determination of ignition delay and derived cetane number (DCN) of middle distillate fuels by combustion in a constant volume chamber. C, 1–20.
  • Standard, T. 2022. TS 13350. 20–21.
  • Sulfur, T., Engine, S. I., Fuel, D. E., Astm, D. & Sensitivity, E. ASTM D5453.
  • Test, C. S. 2004. ASTM D130: Standard test method for corrosiveness to copper from petroleum products by, 1–9. doi:10.1520/D0130-18.2.
  • TR Ministry of Environment and Urbanization. 2006. Regulation on the Control of End-of-Life Tires, Official Gazette Date: 25.11.2006 Official Gazette Number: 26357 (In Turkish).
  • Tudu, K., S. Murugan, and S. K. Patel. 2016. Effect of diethyl ether in a DI diesel engine run on a tyre derived fuel-diesel blend. Journal of the Energy Institute 89 (4):525–35. doi:10.1016/j.joei.2015.07.004.
  • US RMA. 2009. Scrap tire markets in the United States 9th Biennial Report. Prepared by the United States Rubber Manufacturers’ Association. https://www.ustires.org/sites/default/files/MAR_024_USTMA.pdf.
  • Vihar, R., T. Seljak, S. Rodman Oprešnik, and T. Katrašnik. 2015. Combustion characteristics of tire pyrolysis oil in turbo charged compression ignition engine. Fuel 150:226–35. doi:10.1016/j.fuel.2015.01.087.
  • Wang, J., Z. Zhong, K. Ding, B. Zhang, A. Deng, M. Min, P. Chen, and R. Ruan. 2017. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modi fi ed HZSM-5. Energy 133:90–98. doi:10.1016/j.energy.2017.05.146.
  • Yang, J. 2016. Evaluating the feasibility of biodiesel production from camelina sativa. MSc diss., Dalhousie University, Halifax, Nova Scotia.
  • Zerin, N. H., M. G. Rasul, M. I. Jahirul, and A. S. M. Sayem. 2023. End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges. Science of the Total Environment 905:166981. doi:10.1016/j.scitotenv.2023.166981.
  • Zhang, G., F. Chen, Y. Zhang, L. Zhao, J. Chen, L. Cao, J. Gao, and C. Xu. 2021. Properties and utilization of waste tire pyrolysis oil: A mini review. Fuel Processing Technology 211:106582. doi:10.1016/j.fuproc.2020.106582.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.