55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of the effect of the electromagnetic field on the stability of the hydrogen enriched methane flame under acoustic enforcement

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5290-5305 | Received 13 Oct 2023, Accepted 26 Mar 2024, Published online: 09 Apr 2024

References

  • Agarwal, S., M. Kumar, and C. Shakher. 2015. Experimental investigation of the effect of magnetic field on temperature and temperature profile of diffusion flame using circular grating Talbot interferometer. Optics and Lasers in Engineering 68:214–21. doi:10.1016/j.optlaseng.2015.01.004.
  • Ahn, M., Y. Yoon, and S. Joo. 2022. Effects of acoustic excitation on pinch-off flame structure and NOx emissions in H2/CH4 flame. International Journal of Hydrogen Energy 47 (26):13178–90. doi:10.1016/j.ijhydene.2022.02.066.
  • Alabaş, H. A., and B. A. Çeper. 2023. Effect of oxygen enrichment on the combustion characteristic and pollutant emissions of kerosene-biogas mixtures on a mini jet engine combustion chamber. Journal of the Energy Institute 111:101420. doi:10.1016/j.joei.2023.101420.
  • Amini Niaki, S. R., F. G. Zadeh, S. B. A. Niaki, J. Mouallem, and S. Mahdavi. 2019. Experimental investigation of effects of magnetic field on performance, combustion and emission characteristics of a spark ignition engine. Environmental Progress & Sustainable Energy 39 (2). doi:10.1002/ep.13317.
  • Arutyunov, V. S., and G. V. Lisichkin. 2017. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chemical Reviews 86 (8):777. doi:10.1070/RCR4723.
  • Baker, J., and M. E. Calvert. 2003. A study of the characteristics of slotted laminar jet diffusion flames in the presence of non-uniform magnetic fields. Combustion & Flame 133 (3):345–57. doi:10.1016/S0010-2180(03)00021-X.
  • Ball, M., and M. Wietschel. 2009. The future of hydrogen - opportunities and challenges. International Journal of Hydrogen Energy 34 (2):615–27. doi:10.1016/j.ijhydene.2008.11.014.
  • Boben, R. R., V. Ramnath, and K. M. Lyons. 2018. Effect of moderate-strength magnetic field on local temperature in diffusion flames. Aeron Aero Open Access Journal of Science 2 (4):250–57. doi:10.15406/aaoaj.2018.02.00057.
  • Camacho, J. M., and V. Sosa. 2013. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista Mexicana De Fisica E 59:8–17.
  • Dal Belo, T. M., M. A. Chishty, K. Umeki, and R. Gebart. 2022. Pulverized biomass flame under imposed acoustic oscillations: Flame morphology and emission characteristics. Fuel Processing Technology 238:107484. Article 107484. doi:10.1016/j.fuproc.2022.107484.
  • Ferreira, D. S., P. T. Lacava, M. A. Ferreira, and J. J. de Carvalho. 2009. NOx and CO emissions and soot presence in partially premixed acoustically excited flames. Journal of the Energy Institute 82 (3):123–32. doi:10.1179/014426009X12448168549985.
  • Fjita, O., K. Ito, T. Chida, S. Nagai, and Y. Takeshita. 1998. Determination of magnetic field effects on a jet diffusion flame in a microgravity environment. 27th Symposium (International) on Combustion/The Combustion Institute 27 (2):2573–78. doi:10.1016/S0082-0784(98)80110-0.
  • Fujisawa, N., K. Iwasaki, K. Fujisawa, and T. Yamagata. 2019. Flow visualization study of a diffusion flame under acoustic excitation fuel. Fuel 251:506–13. doi:10.1016/j.fuel.2019.04.060.
  • Hassan, M. I., T. W. Wu, and K. Saito. 2013. A combination effect of reburn, post-flame air and acoustic excitation on NOx reduction. Fuel 108:231–37. doi:10.1016/j.fuel.2013.02.032.
  • Huang, H. L., A. Ying, and M. A. Abdou. 2002. 3D MHD free surface fluid flow simulation based on magnetic-field induction equations. Fusion Engineering and Design 63_/64:361_/368. doi:10.1016/S0920-3796(02)00261-2.
  • Hussain, T., M. Talibi, and R. Balachandran. 2019. Investigating the effect of local addition of hydrogen to acoustically excited ethylene and methane flames. International Journal of Hydrogen Energy 44 (21):11168–84. doi:10.1016/j.ijhydene.2019.02.182.
  • Ilbas, M., O. Kekul, and S. Karyeyen. 2022. Investigation into thermal-fluid interaction of ammonia turbulent swirling flames under various non-premixed burner conditions. Fuel 312:122967. doi:10.1016/j.fuel.2021.122967.
  • Ion, I. V., E. Dimofte, F. Popescu, and I. G. Akhmetova. 2022. Investigation of flame acoustic excitation of a gas burner. Energy Reports 8:263–69. doi:10.1016/j.egyr.2022.01.075.
  • Jiancun, G., Y. Xigang, H. Shoutao, W. Le, H. Zijin, S. Xu, and L. Ruxia. 2022. Effects of magnetic fields on combustion and explosion. Chemistry and Technology of Fuels and Oils 58 (2):379–90. doi:10.1007/s10553-022-01395-3.
  • Kumar, M., S. Agarwal, V. Kumar, G. S. Khan, and C. Shakher. 2014. Study the effect of magnetic field on gaseous flames using digital speckle pattern interferometry 1620: 273–81. 10.1063/1.4898253.
  • Kumuk, O., and M. Ilbas. 2023. Comparative analysis of ammonia/hydrogen fuel blends combustion in a high swirl gas turbine combustor with different cooling angles. International Journal of Hydrogen Energy 52:1404–18. doi:10.1016/j.ijhydene.2023.07.166.
  • Ładyżyńska-Kozdraś, E., A. Sibilska-Mroziewicz, and S. Czubaj. 2018. Experimental measurement of magnetic field generated by Neodymium Magnet. In Mechatronics 2017. MECHATRONICS 2017. Advances in intelligent systems and computing, eds. T. Březina and R. Jabłoński, Vol. 644, US: Springer. doi: 10.1007/978-3-319-65960-2_69.
  • Li, R., A. A. Konnov, G. He, F. Qin, and D. Zhang. 2019. Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures. Fuel 257:116059. doi:10.1016/j.fuel.2019.116059.
  • Mazloomi, K., and C. Gomes. 2012. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 16 (5):3024–33. doi:10.1016/j.rser.2012.02.028.
  • Mishra, D. P. 2014. Experimental combustion: An introduction. 1st ed. US: Taylor and Francis Group.
  • Morrish, A. H. 2001. The physical principles of magnetism. doi:10.1109/9780470546581.
  • Nanda, S., R. Azargohar, A. K. Dalai, and J. A. Kozinski. 2015. An assessment on the sustainability of lignocellulosic biomass for biorefining. Renewable and Sustainable Energy Reviews 50:925–41. doi:10.1016/j.rser.2015.05.058.
  • Oh, P. H., Y. Yoon, and Y. Yoon. 2009. Acoustic excitation effect on NOx reduction and flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air. International Journal of Hydrogen Energy 34 (18):7851–61. doi:10.1016/j.ijhydene.2009.07.050.
  • Oommen, P. L. 2019. A study on the effect of magnetic field on the properties and combustion of hydrocarbon fuels. International Journal of Mechanical & Production Engineering 9 (3):89–98. doi:10.24247/ijmperdjun20199.
  • Oommen, L. P., and G. N. Kumar. 2020. Experimental studies on the influence of axial and radial fields of sintered neo-delta magnets in reforming the energy utilization combustion and emission properties of a hydrocarbon fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–21. doi:10.1080/15567036.2020.1767729.
  • Poppe, C., S. Sivasegaram, and J. H. Whitelaw. 1998. Control of NOx emissions in confined flames by oscillations. Combustion & Flame 113 (1–2):13–26. doi:10.1016/S0010-2180(97)00164-8.
  • Saeedi, A., and M. Moghiman. 2014. Kerosene wick lamp flame deformation in gradient magnetic fields. Applied Physics Letters 104 (11). doi: 10.1063/1.4868877.
  • Shinoda, M., E. Yamada, T. Kajimoto, H. Yamashita, and K. Kitagawa. 2005. Mechanism of magnetic field effect on OH density distribution in a methane-air premixed jet flame. Proceedings of the Combustion Institute International Symposium on Combustion 30 (1):277–84. doi:10.1016/j.proci.2004.07.006.
  • Su, B., Z. Luo, T. Wang, C. Xie, and F. Cheng. 2021. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. Journal of Hazardous Materials 403:123680. doi:10.1016/j.jhazmat.2020.123680.
  • Swaminathan, S. 2005. Effects of magnetic field on micro flames. Master’s thesis, Louisiana State University and Agricultural and Mechanical College, Department of Mechanical Engineering.
  • Tuncer, O., S. Acharya, and J. H. Uhm. 2009. Dynamics, NOx and flashback characteristics of confined premixed hydrogen-enriched methane flames. International Journal of Hydrogen Energy 34 (1):496–506. doi:10.1016/j.ijhydene.2008.09.075.
  • Ueno, S., and K. Harada. 1987. Effects of magnetic fields on flames and gas flow. IEEE Transactions on Magnetics 23 (5):2752–54. doi:10.1109/TMAG.1987.1065242.
  • Wakayama, N. I. 1992. Effect of a gradient magnetic field on the combustion reaction of methane in air. Chemical Physics Letters 188 (3–4):279–81. doi:10.1016/0009-2614(92)90022-F.
  • Wang, M., Y. Zhong, and K. Deng. 2019a. Experiment investigation of the effects of hydrogen content on the combustion instability of methane/hydrogen lean premixed swirl flames under different acoustic frequency ranges. AIP Advances 9 (45206):1–13. doi:10.1063/1.5091617.
  • Wang, M., Y. Zhong, and K. Deng. 2019b. Experiment investigation of the effects of hydrogen content on the combustion instability of methane/hydrogen lean premixed swirl flames under different acoustic frequency ranges. AIP Advances 9 (4):1–12. doi:10.1063/1.5091617.
  • Wu, W., J. Qu, K. Zhang, W. Chen, and B. Li. 2015. Experimental studies of magnetic effect on methane laminar combustion characteristics. Combustion Science and Technology 188 (3):472–80. doi:10.1080/00102202.2015.1119825.
  • Ye, Q., B. Q. Lin, C. G. Jian, and Z. Z. Jia. 2011. Effects of magnetic field on methane explosion, and its propagation. Baozha Yu Chongji/Explosion and Shock Waves 31:153–57.
  • Zhang, W., J. Wang, R. Mao, W. Lin, B. Lin, Y. Wu, M. Zhang, and Z. Huang. 2021. Experimental study of compact swirl flames with lean premixed CH4/H2/air mixtures at stable and near blow-off conditions. Experimental Thermal & Fluid Science 122:110294. doi:10.1016/j.expthermflusci.2020.110294.
  • Zharfa, M., and N. Karimi. 2021. Intensification of MILD combustion of methane and hydrogen blend by the application of a magnetic field- a numerical study. Acta Astronautica 184 (February):259–68. doi:10.1016/j.actaastro.2021.04.023.
  • Ziani, L., and A. Chaker. 2016. Ambient pressure effect on non-premixed turbulent combustion of CH4–H2 mixture. International Journal of Hydrogen Energy 41 (27):11842–47. doi:10.1016/j.ijhydene.2015.11.167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.