37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The enhancement of photocatalytic hydrogen production over Ag2WO4 modified g-C3N4 with Pt as cocatalyst

, ORCID Icon, , , , , , & show all
Pages 6404-6414 | Received 05 Sep 2023, Accepted 17 Apr 2024, Published online: 02 May 2024

References

  • Alvarez-Roca, R., A. F. Gouveia, C. C. de Foggi, P. S. Lemos, L. Gracia, L. F. da Silva, C. E. Vergani, M. San-Miguel, E. Longo, and J. Andrés. 2020. Selective synthesis of α-, β-, and γ-Ag2WO4 polymorphs: Promising platforms for photocatalytic and antibacterial materials. Inorganic Chemistry 60 (2):1062–79. doi:10.1021/acs.inorgchem.0c03186.
  • Atrees, M. S., E. E. Ebraheim, M. E. M. Ali, Y. M. Khawassek, M. S. Mahmoud, and M. M. Almutairi. 2021. Synergetic effect of metal-doped GO and TiO2 on enhancing visible-light-driven photocatalytic hydrogen production from water splitting. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (4):484–94. doi:10.1080/15567036.2019.1629130.
  • Ayappan, C., and A. Mani. 2023. Facile construction of a fascinating dual Z-scheme Bi2S3/tg-C3N4/α-Ag2WO4 photocatalyst for effective removal of organic pollutants: Influence factors, mechanism insight and degradation pathway. Journal of Water Process Engineering 51:103373. doi:10.1016/j.jwpe.2022.103373.
  • Babu, B., J. Shim, A. N. Kadam, and K. Yoo. 2019. Modification of porous g-C3N4 nanosheets for enhanced photocatalytic activity: In-situ synthesis and optimization of NH4Cl quantity. Catalysis Communications 124:123–27. doi:10.1016/j.catcom.2019.01.009.
  • Che, Y. P., B. X. Lu, Q. Qi, H. Q. Chang, J. Zhai, K. F. Wang, and Z. Y. Liu. 2018. Bio-inspired Z-scheme g-C3N4/Ag2CrO4 for efficient visible-light photocatalytic hydrogen generation. Scientific Reports 8 (1):16504. doi:10.1038/s41598-018-34287-w.
  • Chen, L., S. D. Yang, W. S. Qi, Q. Zhang, J. Zhu, and P. Zhao. 2021. Supramolecular self-assembly of nitrogen-deficient Ag/g-C3N4 nanofiber films with enhanced charge transfer dynamics for efficient visible-light photocatalytic activity. ACS Applied Materials & Interfaces 13 (42):49993–50004. doi:10.1021/acsami.1c15321.
  • Ding, J. J., X. X. Sun, Q. Wang, D. S. Li, X. Y. Li, X. X. Li, L. Chen, X. Zhang, X. Y. Tian, and K. Ostrikov. 2021. Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds 873:159871. doi:10.1016/j.jallcom.2021.159871.
  • Du, J. F., J. H. Zhao, and J. Ren. 2021. Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction. Journal of Fuel Chemistry and Technology 49 (7):986–96. doi:10.1016/S1872-5813(21)60109-3.
  • Fan, Z. B., X. Guo, Z. L. Jin, X. Li, and Y. J. Li. 2022. Bridging effect of S–C bond for boosting electron transfer over cubic hollow CoS/g-C3N4 heterojunction toward photocatalytic hydrogen production. Langmuir 38 (10):3244–56. doi:10.1021/acs.langmuir.1c03379.
  • Huang, J. X., D. G. Li, Y. Liu, R. B. Li, P. Chen, H. J. Liu, W. Y. Lv, G. G. Liu, and Y. P. Feng. 2020. Ultrathin Ag2WO4-coated P-doped g-C3N4 nanosheets with remarkable photocatalytic performance for indomethacin degradation. Journal of Hazardous Materials 392:122355. doi:10.1016/j.jhazmat.2020.122355.
  • Huo, Y., Z. L. Wang, J. F. Zhang, C. H. Liang, and K. Dai. 2018. Ag SPR-promoted 2D porous g-C3N4/Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation. Applied Surface Science 459:271–80. doi:10.1016/j.apsusc.2018.08.005.
  • Hu, Z. F., D. Shi, G. H. Wang, T. Y. Gao, J. Wang, L. Y. Lu, and J. Li. 2022. Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solid-state Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light. Applied Surface Science 601:154167. doi:10.1016/j.apsusc.2022.154167.
  • Hutchings, G. J., P. R. Davies, S. Pattisson, T. E. Davies, D. J. Morgan, and M. W. Dlamini. 2022. Facile synthesis of a porous 3D g-C3N4 photocatalyst for the degradation of organics in shale gas brines. Catalysis Communications 169:106480. doi:10.1016/j.catcom.2022.106480.
  • Jiang, D. L., L. L. Chen, J. M. Xie, and M. Chen. 2014. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Transactions 43 (12):4878–85. doi:10.1039/C3DT53526F.
  • Jiang, J. Z., Z. G. Xiong, H. T. Wang, G. D. Liao, S. S. Bai, J. Zou, P. X. Wu, P. Zhang, and X. Li. 2022. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. Journal of Materials Science & Technology 118:15–24. doi:10.1016/j.jmst.2021.12.018.
  • Jin, Z. Q., S. Q. Li, S. J. Jin, D. Wang, F. L. Dong, S. Song, M. Liu, and T. Zeng. 2022. Hydroxylated g-C3N4 designed for the activation of peroxymonosulfate via a charge transfer complex path. Catalysis Communications 171:106512. doi:10.1016/j.catcom.2022.106512.
  • Lin, X., D. Xu, S. S. Jiang, F. Xie, M. S. Song, H. J. Zhai, L. N. Zhao, G. B. Che, and L. M. Chang. 2017. Graphitic carbon nitride nanocrystals decorated AgVO3 nanowires with enhanced visible-light photocatalytic activity. Catalysis Communications 89:96–99. doi:10.1016/j.catcom.2016.10.021.
  • Liu, B., Y. Wang, W. J. Hua, and Y. Kang. 2023. Fabrication of novel pn heterojunction of BiOBr/Ag2WO4 photocatalysts with efficient visible-light-driven catalytic activity. Materials Letters 346:134563. doi:10.1016/j.matlet.2023.134563.
  • Li, Y. M., J. B. Zhong, and J. Z. Li. 2022. Rich carbon vacancies facilitated solar light-driven photocatalytic hydrogen generation over g-C3N4 treated in H2 atmosphere. International Journal of Hydrogen Energy 47 (94):39886–97. doi:10.1016/j.ijhydene.2022.09.147.
  • Ni, Z. W., Y. Shen, L. H. Xu, G. H. Xiang, M. Y. Chen, N. Shen, K. Li, and K. Ni. 2022. Facile construction of 3D hierarchical flower-like Ag2WO4/Bi2WO6 Z-scheme heterojunction photocatalyst with enhanced visible light photocatalytic activity. Applied Surface Science 576:151868. doi:10.1016/j.apsusc.2021.151868.
  • Niu, L. Y., J. Y. Xin, J. Liu, Y. Liu, X. Wu, F. Zhang, X. W. Li, C. L. Shao, X. H. Li, and Y. C. Liu. 2023. Highly dispersed g-C3N4 on well-designed three-dimensional porous nanostructured ZrO2 for high-performance photocatalytic degradation and H2 production. Journal of Colloid and Interface Science 638:324–38. doi:10.1016/j.jcis.2023.01.120.
  • Qin, C., H. Li, J. B. Zhong, J. Z. Li, S. T. Huang, and L. Ma. 2021. Preparation of cypress leave-like Ag2WO4/BiVO4 heterojunctions with remarkably enhanced photocatalytic activity. Materials Letters 283:128793. doi:10.1016/j.matlet.2020.128793.
  • Qiu, F. X., X. L. Zhu, Q. Guo, Y. T. Dai, J. C. Xu, and T. Zhang. 2017. Fabrication of a novel hierarchical flower-like hollow structure Ag2WO4/WO3 photocatalyst and its enhanced visible-light photocatalytic activity. Powder Technology 317:287–92. doi:10.1016/j.powtec.2017.05.026.
  • Salesi, S., and A. Nezamzadeh. 2022. Boosted photocatalytic effect of binary AgI/Ag2WO4 nanocatalyst: Characterization and kinetics study towards ceftriaxone photodegradation. Environmental Science and Pollution Research 29 (60):90191–206. doi:10.1007/s11356-022-22100-1.
  • Sampath, S., and K. Sellappa. 2020. Visible-light-driven photocatalysts for hydrogen production by water splitting. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (6):719–29. doi:10.1080/15567036.2019.1602194.
  • Shang, Y. Y., H. Q. Fan, Y. Q. Chen, W. Q. Dong, and W. J. Wang. 2023. Synergism between nitrogen vacancies and a unique electrons transfer pathway of Ag modified S-scheme g-C3N4/CdS heterojunction for efficient H2 evolution. Journal of Alloys and Compounds 933:167620. doi:10.1016/j.jallcom.2022.167620.
  • Sun, T., H. Y. Jiang, C. C. Ma, F. Mao, and B. Xue. 2016. Ag/g-C3N4 photocatalysts: Microwave-assisted synthesis and enhanced visible-light photocatalytic activity. Catalysis Communications 79:45–48. doi:10.1016/j.catcom.2016.03.004.
  • Wang, B., H. J. He, H. J. Hao, P. Li, H. R. Cai, F. F. Shang, B. An, X. Q. Li, and S. C. Yang. 2023. Triphenylphosphine assisted phosphorization of g-C3N4 for enhanced photocatalytic activity. Materials letters 333:133726. doi:10.1016/j.matlet.2022.133726.
  • Wang, B. Y., G. Y. Zhang, G. W. Cui, Y. Y. Xu, Y. Liu, and C. Y. Xing. 2019. Controllable fabrication of α-Ag2WO4 nanorod-clusters with superior simulated sunlight photocatalytic performance. Inorganic Chemistry Frontiers 6 (1):209–19. doi:10.1039/C8QI01025K.
  • Wang, C. K., A. C. Zhang, D. Peng, Y. Y. Mei, Y. X. Wang, J. Guo, Z. Q. Tan, Y. W. Liu, and H. X. Li. 2022. Facile fabrication of 3D spherical Ag2WO4 doped BiOI/BiOCl double S-scheme heterojunction photocatalyst with efficient activity for mercury removal. Journal of Environmental Chemical Engineering 10 (6):108517. doi:10.1016/j.jece.2022.108517.
  • Xiao, X. P., J. H. Wei, Y. Yang, R. Xiong, C. X. Pan, and J. Shi. 2016. Photoreactivity and mechanism of g-C3N4 and Ag co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustainable Chemistry Engineering 4 (6):3017–23. doi:10.1021/acssuschemeng.5b01701.
  • Xu, H., Y. L. Cao, J. Xie, J. D. Hu, Y. Z. Li, and D. Z. Jia. 2018. A construction of Ag-modified raspberry-like AgCl/Ag2WO4 with excellent visible-light photocatalytic property and stability. Materials Research Bulletin 102:342–52. doi:10.1016/j.materresbull.2018.02.047.
  • Yang, Y. L., S. Y. Li, Y. L. Mao, L. Y. Dang, Z. F. Jiao, and K. D. Xu. 2023. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution. Journal of Fuel Chemistry & Technology 51 (2):205–14. doi:10.1016/S1872-5813(22)60036-7.
  • Yang, J., X. H. Wu, Z. H. Mei, S. Zhou, Y. R. Su, and G. H. Wang. 2022. CVD assisted synthesis of macro/mesoporous TiO2/g-C3N4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Advanced Sustainable Systems 6 (8):2200056. doi:10.1002/adsu.202200056.
  • Zhang, Q. Q., X. Bai, X. Y. Hu, J. Fan, and E. Z. Liu. 2022. Efficient photocatalytic H2 evolution over 2D/2D S-scheme NiTe2/g-C3N4 heterojunction with superhydrophilic surface. Applied Surface Science 579:152224. doi:10.1016/j.apsusc.2021.152224.
  • Zhang, S. W., J. H. Guo, W. J. Zhang, H. H. Gao, J. Z. Huang, G. Chen, and X. J. Xu. 2021. Dopant and defect doubly modified CeO2/g-C3N4 nanosheets as 0D/2D Z-scheme heterojunctions for photocatalytic hydrogen evolution: Experimental and density functional theory studies. ACS Sustainable Chemistry & Engineering 9 (34):11479–92. doi:10.1021/acssuschemeng.1c03683.
  • Zhang, Y. K., and Z. L. Jin. 2019. Synergistic enhancement of hydrogen production by ZIF-67 (Co) derived Mo–Co–S modified g-C3N4/rGO photocatalyst. Catalysis Letters 149 (1):34–48. doi:10.1007/s10562-018-2593-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.