104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methodology for the Integration of Structural Health Assessment of Masonry Bridges into HBIM

, , , &
Received 17 Jan 2024, Accepted 08 Apr 2024, Published online: 18 Apr 2024

References

  • Annan, A. P. 2003. “Ground penetrating radar principles, procedure & applications.” Ground Penetrating Radar Theory and Applications Ground Pen.
  • Barros, B., B. Conde, M. Cabaleiro, and B. Riveiro. 2023. Deterministic and probabilistic-based model updating of Aging Steel Bridges. Structures 54 (August):89–105. doi:10.1016/j.istruc.2023.05.020.
  • Bautista-De, C., L. J. S.-A. Álvaro, P. Carrasco-García, L. F. Ramos, and D. González-Aguilera. 2019. A multidisciplinary approach to calibrating advanced numerical simulations of Masonry Arch Bridges. Mechanical Systems and Signal Processing 129:337–65. doi:10.1016/j.ymssp.2019.04.043.
  • Bouzas, Ó., M. Cabaleiro, B. Conde, Y. Cruz, and B. Riveiro. 2022. StructuraL health control of historical steel structures using HBIM. Automation in Construction 140:104308. doi:10.1016/j.autcon.2022.104308.
  • Bouzas, O., B. Conde, M. Cabaleiro, and B. Riveiro. 2022. A holistic methodology for the non-destructive experimental characterization and reliability-based structural assessment of historical Steel Bridges. Engineering Structures 270:270. doi:10.1016/j.engstruct.2022.114867.
  • Bouzas, O., B. Conde, J. C. Matos, M. Solla, and M. Cabaleiro. 2023. Reliability-based structural assessment of historical Masonry Arch Bridges: The case study of cernadela bridge. Case Studies in Construction Materials 18:e02003. doi:10.1016/j.cscm.2023.e02003.
  • Brincker, R., and C. Ventura. 2015. Introduction to operational modal analysis. John Wiley & Sons.
  • BRÜEL & KJAER and HBK Company. n.d. https://Www.Bksv.Com/
  • Bruno, S., M. De Fino, and F. Fatiguso. 2018. Historic building information modelling: Performance assessment for diagnosis-aided information modelling and management. Automation in Construction 86:256–76. doi:10.1016/j.autcon.2017.11.009.
  • Cabaleiro, M., B. Riveiro, P. Arias, and J. C. Caamaño. 2016. Algorithm for the analysis of deformations and stresses due to torsion in a metal beam from LIDAR data. Structural Control and Health Monitoring 23 (7):1032–46. doi:10.1002/stc.1824.
  • Cabaleiro, M., B. Riveiro, B. Conde, and A. Sanchez-Rodriguez. 2020. A case study of measurements of deformations due to different loads in pieces less than 1 m from lidar data. Measurement 151:107196. doi:10.1016/j.measurement.2019.107196.
  • Conde, B., L. F. Ramos, D. V. Oliveira, B. Riveiro, and M. Solla. 2017. Structural assessment of Masonry Arch Bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova Bridge. Engineering Structures 148:621–38. doi:10.1016/j.engstruct.2017.07.011.
  • Conti, A., L. Fiorini, R. Massaro, C. Santoni, and G. Tucci. 2020. HBIM for the preservation of a historic infrastructure: The Carlo III Bridge of the Carolino Aqueduct. Applied Geomatics 14 (S1):41–51. doi:10.1007/s12518-020-00335-2.
  • Costa, C., D. Ribeiro, P. Jorge, R. Silva, A. Arêde, and R. Calçada. 2016. Calibration of the numerical model of a Stone Masonry railway bridge based on experimentally identified modal parameters. Engineering Structures 123:354–71. doi:10.1016/j.engstruct.2016.05.044.
  • Daniels, D. J. 2004. Ground Penetrating Radar. London UK: The Institution of Electrical Engineers.
  • Garzia, F., D. Costantino, and V. Baiocchi. 2018. Security and safety management and role of laser scanning in unique and peculiar cultural heritage sites such as the Papal Basilica and the sacred convent of Saint Francis in Assisi in Italy. Heritage Architecture Studies 2 (2):271–82. doi:10.2495/HA-V2-N2-271-282.
  • Gibbons, J., C. Subhabrata, and M. Dekker. 2003. Nonparametric Statistical Inference. CRC Press.
  • GMSplus. n.d. “GMSplus6 n.d.” Accessed February 20, 2017. https://www.geosig.com/GMSplus—GMSplus6-id12557.aspx.
  • Herráez, J., P. Navarro, J. Luis Denia, M. Teresa Martín, and J. Rodríguez. 2014. Modeling the thickness of vaults in the church of Santa Maria de Magdalena (Valencia, Spain) with laser scanning techniques. Journal of Cultural Heritage 15 (6):679–86. doi:10.1016/j.culher.2013.11.015.
  • Hou, R., and Y. Xia. 2021. Review on the New Development of Vibration-Based Damage Identification for Civil Engineering Structures: 2010–2019. Journal of Sound and Vibration 491:115741. doi:10.1016/j.jsv.2020.115741.
  • Jacinto, C., and L. Alberto Do. 2011. Avaliação Da Segurança de Pontes Existentes: Abordagem Probabilística Bayesiana.
  • JCSS. 2000. “Probabilistic model code - part 3: Material properties.” Jcss.
  • JCSS. 2001a. “Probabilistic Model Code - Part 1: Design Basis.” Structural Safety, no. March.
  • JCSS. 2001b. “Probabilistic Model Code - Part 2: Load Models.” Jcss.
  • Joanna, H., and I. J. Ewart. 2020. Conservation data parameters for BIM-Enabled heritage asset management. Automation in Construction 119. doi:10.1016/j.autcon.2020.103333.
  • Kassotakis, N., and V. Sarhosis. 2021. Employing non-contact sensing techniques for improving efficiency and automation in numerical modelling of existing masonry structures: a critical literature review. Structures 32:1777–97. doi:10.1016/j.istruc.2021.03.111.
  • López, F. J., P. M. Lerones, José Llamas, Jaime Gómez-garcía-bermejo, and Eduardo Zalama. 2018. Semi-Automatic Generation of BIM Models for Cultural Heritage. International Journal of Heritage Architecture: Studies, Repairs and Maintence 2 (2):293–302. doi:10.2495/HA-V2-N2-293-302.
  • Lourenço, P. B., A. Trujillo, N. Mendes, and L. F. Ramos. 2012. Seismic performance of the St. George of the latins church: Lessons learned from studying masonry ruins. Engineering Structures 40:501–18. doi:10.1016/j.engstruct.2012.03.003.
  • Manuel, C., J. M. Branco, H. S. Sousa, and B. Conde. 2018. First results on the combination of laser scanner and drilling resistance tests for the assessment of the geometrical condition of irregular cross-sections of timber beams. Materials and Structures/Materiaux Et Constructions 51 (4). doi:10.1617/s11527-018-1225-9.
  • Marecos, V., S. Fontul, M. de Lurdes Antunes, and M. Solla. 2017. Evaluation of a highway pavement using non-destructive tests: Falling weight deflectometer and ground penetrating radar. Construction and Building Materials 154:1164–72. doi:10.1016/j.conbuildmat.2017.07.034.
  • McKay, M. D., R. J. Beckman, and W. J. Conover. 1979 2. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (2):239. doi:10.2307/1268522.
  • Meoni, A., F. Vittori, C. Piselli, A. D’Alessandro, A. L. Pisello, and F. Ubertini. 2022. Integration of structural performance and human-centric comfort monitoring in historical building information modeling. Automation in Construction 138:104220. doi:10.1016/j.autcon.2022.104220.
  • Mol, A., M. Cabaleiro, H. S. Sousa, and J. M. Branco. 2020. HBIM for storing life-cycle data regarding decay and damage in existing timber structures. Automation in Construction 117:103262. doi:10.1016/j.autcon.2020.103262.
  • Mora, R., L. Javier Sánchez-Aparicio, M. Ángel Maté-González, J. García-Álvarez, M. Sánchez-Aparicio, and D. González-Aguilera. 2021. An historical building information modelling approach for the preventive conservation of historical constructions: Application to the historical library of Salamanca. Automation in Construction 121:103449. doi:10.1016/j.autcon.2020.103449.
  • Moreira, V. N., J. Fernandes, J. C. Matos, and D. V. Oliveira. 2016. Reliability-based assessment of existing masonry arch railway bridges. Construction and Building Materials 115:544–54. doi:10.1016/j.conbuildmat.2016.04.030.
  • Oliveira, D. V., P. B. Lourenço, and C. Lemos. 2010. Geometric issues and ultimate load capacity of masonry arch bridges from the Northwest Iberian Peninsula. Engineering Structures 32 (12):3955–65. doi:10.1016/j.engstruct.2010.09.006.
  • Olsen, M. J., F. Kuester, B. J. Chang, and T. C. Hutchinson. 2010. Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering 24 (3): 264–272.
  • Palomar, I. J., J. L. García Valldecabres, P. Tzortzopoulos, and E. Pellicer. 2020. An online platform to unify and synchronise heritage architecture information. Automation in Construction 110:103008. doi:10.1016/j.autcon.2019.103008.
  • Pellis, E., A. Masiero, G. Tucci, M. Betti, and P. Grussenmeyer. 2021. Assembling an image and point cloud dataset for heritage building semantic segmentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 46:539–46. doi:10.5194/isprs-archives-XLVI-M-1-2021-539-2021.
  • Piaia, E., F. Maietti, R. Di Giulio, O. Schippers-Trifan, A. Van Delft, S. Bruinenberg, and R. Olivadese. 2021. BIM-Based cultural heritage asset management tool. innovative solution to orient the preservation and valorization of historic buildings. International Journal of Architectural Heritage 15 (6):897–920. doi:10.1080/15583058.2020.1734686.
  • Rainieri, C., and G. Fabbrocino. 2014. OperationaL modal analysis of civil engineering structures. Springer, New York 142:143.
  • Ramos, L. F. 2007. Damage identification on Masonry structures based on vibration signatures.
  • Riveiro, B., P. Arias, J. Armesto, and C. Ordóñez. 2011. a methodology for the inventory of historical infrastructures: Documentation, current state, and influencing factors. International Journal of Architectural Heritage 5 (6):629–46. doi:10.1080/15583051003792880.
  • Riveiro, B., P. B. Lourenço, D. V. Oliveira, H. González‐Jorge, and P. Arias. 2016. Automatic morphologic analysis of Quasi‐periodic Masonry Walls from LiDAR. Computer-Aided Civil and Infrastructure Engineering 31 (4):305–19. doi:10.1111/mice.12145.
  • Rodrigues, J. 2004. Identificação Modal Estocástica: Métodos de Análise e Aplicações Em Estruturas de Engenharia Civil. Faculdade de Engenharia Da Universidade Do Porto 1:101.
  • Rosati, I., G. Fabbrocino, and C. Rainieri. 2022. A discussion about the Douglas-Reid model updating method and its prospective application to continuous vibration-based SHM of a historical building. Engineering Structures 273:273. doi:10.1016/j.engstruct.2022.115058.
  • Sánchez-Aparicio, L. J., Á. Bautista-De Castro``, B. Conde, P. Carrasco, and L. F. Ramos. 2019. Non-destructive means and methods for structural diagnosis of Masonry Arch Bridges. Automation in Construction 104:360–82. doi:10.1016/j.autcon.2019.04.021.
  • Sánchez-Aparicio, L. J., B. Riveiro, D. Gonzalez-Aguilera, and L. F. Ramos. 2014. The combination of geomatic approaches and operational modal analysis to improve calibration of finite element models: a case of study in Saint Torcato Church (guimarães, Portugal). Construction and Building Materials 70:118–29. doi:10.1016/j.conbuildmat.2014.07.106.
  • Sánchez-Haro, J., I. Lombillo, and G. Capellán. 2023. Modelling criteria proposal for dynamic analysis of beam bridges under moving loads using fem models. Structures 50:651–69. doi:10.1016/j.istruc.2023.02.067.
  • Sánchez-Rodríguez, A., M. Soilán, M. Cabaleiro, and P. Arias. 2019. Automated inspection of railway tunnels’ power line using LiDAR point clouds. Remote Sensing 11 (21):2567. doi:10.3390/rs11212567.
  • Santini, S., C. Baggio, V. Sabbatini, and C. Sebastiani. 2021. Setup optimization of experimental measures on a historical building: The Octagonal Hall of the Diocletian’s Bath. Heritage 4 (3):2205–23. doi:10.3390/heritage4030124.
  • Santos, R., A. Aguiar Costa, J. D. Silvestre, and L. Pyl. 2019. Informetric analysis and review of literature on the role of BIM in sustainable construction. Automation in Construction 103:221–34. doi:10.1016/j.autcon.2019.02.022.
  • Sevim, B., A. Bayraktar, A. Can Altuniik, S. Atamtürktür, and F. Birinci. 2011. Finite element model calibration effects on the earthquake response of Masonry Arch Bridges. Finite Elements in Analysis and Design 47 (7):621–34. doi:10.1016/j.finel.2010.12.011.
  • Simeone, D., S. Cursi, and M. Acierno. 2019. BIM semantic-enrichment for built heritage representation. Automation in Construction 97:122–37. doi:10.1016/j.autcon.2018.11.004.
  • Simoen, E., G. De Roeck, and G. Lombaert. 2015. Dealing with uncertainty in model updating for damage assessment: A review. Mechanical Systems and Signal Processing 56-57:123–49. doi:10.1016/j.ymssp.2014.11.001.
  • SVS. 2015. Artemis Modal Pro, Release 4.5. Structural Vibrations Solutions. Aalborg 1:2015.
  • Sztwiertnia, D., A. Ochałek, A. Tama, and P. Lewińska. 2021. HBIM (Heritage Building Information Modell) of the Wang Stave Church in Karpacz–Case Study. International Journal of Architectural Heritage 15 (5):713–27. doi:10.1080/15583058.2019.1645238.
  • Talebi, A., F. Potenza, and V. Gattulli. 2023. Interoperability between BIM and FEM for vibration-based model updating of a Pedestrian Bridge. Structures 53:1092–107. doi:10.1016/j.istruc.2023.04.115.
  • Valero, E., A. Forster, F. Bosché, E. Hyslop, L. Wilson, and A. Turmel. 2019. Automated defect detection and classification in ashlar masonry walls using machine learning. Automation in Construction 106:102846. doi:10.1016/j.autcon.2019.102846.
  • Xiong, X., A. Adan, B. Akinci, and D. Huber. 2013. Automatic creation of semantically rich 3D building models from laser Scanner data. Automation in Construction 31:325–37. doi:10.1016/j.autcon.2012.10.006.
  • Yin, X., H. Liu, Y. Chen, and M. Al-Hussein. 2019. Building information modelling for off-site construction: Review and future directions. Automation in Construction 101:72–91. doi:10.1016/j.autcon.2019.01.010.
  • Zordan, T., B. Briseghella, and T. Liu. 2014. Finite element model updating of a Tied-Arch Bridge using Douglas-Reid method and rosenbrock optimization algorithm. Journal of Traffic & Transportation Engineering 1 (4):280–92. doi:10.1016/S2095-7564(15)30273-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.