282
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances of Application and Structural Design of Cellulose-Based Composites for EMI Shielding

, , , , , & show all
Received 15 Nov 2022, Accepted 15 Mar 2024, Published online: 04 Apr 2024

References

  • Li, Y.; Sun, L.; Xu, F.; Wang, S. S.; Peng, Q. Y.; Yang, Z. Y.; He, X. D.; Li, Y. B. Electromagnetic and Acoustic Double-Shielding Graphene-Based Metastructures. Nanoscale 2019, 11, 1692–1699. DOI: 10.1039/C8NR06143B.
  • Guan, Q.; Han, Z.; Yang, K.; Yang, H.; Ling, Z.; Yin, C.; Yu, S. Sustainable Double-Network Structural Materials for Electromagnetic Shielding. Nano Lett. 2021, 21, 2532–2537. DOI: 10.1021/acs.nanolett.0c05081.
  • Shim, J.; Lee, J.; Lee, J. S.; Son, D. I. Thermally Enhanced Boron Nitride Nanotube/Reduced Graphene Oxide Paper and Their Application. Electron. Mater. Lett. 2021, 17, 500–506. DOI: 10.1007/s13391-021-00304-w.
  • Cui, Z.; Gao, C.; Fan, Z.; Wang, J.; Cheng, Z.; Xie, Z.; Liu, Y.; Wang, Y. Lightweight MXene/Cellulose Nanofiber Composite Film for Electromagnetic Interference Shielding. J. Elec. Mater. 2021, 50, 2101–2110. DOI: 10.1007/s11664-020-08718-2.
  • Chung, D. D. L. Materials for Electromagnetic Interference Shielding. Mater. Chem. Phys. 2020, 255, 123587. DOI: 10.1016/j.matchemphys.2020.123587.
  • Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic Replacement Reaction Involving Core-Shell Magnetic Chains and Orientation-Tunable Microwave Absorption Properties. Small 2020, 16, e2003502. DOI: 10.1002/smll.202003502.
  • Osman, N. H.; Mazu, N. N.; Ying Chyi Liew, J.; Ramli, M. M.; Sandu, A. V.; Nabiałek, M.; Abdull Majid, M. A. H. M.; Mazlan, H. I. Sodium-Based Chitosan Polymer Embedded with Copper Selenide (CuSe) Flexible Film for High Electromagnetic Interference (EMI) Shielding Efficiency. Magnetochemistry 2021, 7, 102. DOI: 10.3390/magnetochemistry7070102.
  • Liu, R.; Li, T.; Xu, J.; Zhang, T.; Xie, Y.; Li, J.; Wang, L. Sandwich-Structural Ni/Fe3O4/Ni/Cellulose Paper with a Honeycomb Surface for Improved Absorption Performance of Electromagnetic Interference. Carbohydr. Polym. 2021, 260, 117840. DOI: 10.1016/j.carbpol.2021.117840.
  • Zhang, L.-Q.; Yang, S.-G.; Li, L.; Yang, B.; Huang, H.-D.; Yan, D.-X.; Zhong, G.-J.; Xu, L.; Li, Z.-M. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2018, 10, 40156–40167. DOI: 10.1021/acsami.8b14738.
  • Jia, L.; Zhou, C.; Sun, W.; Xu, L.; Yan, D.; Li, Z. Water-Based Conductive Ink for Highly Efficient Electromagnetic Interference Shielding Coating. Chem. Eng. J. 2020, 384, 123368. DOI: 10.1016/j.cej.2019.123368.
  • Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in Polymers and Polymer Composites Used as Efficient Materials for EMI Shielding. Nanoscale Adv. 2021, 3, 123–172. DOI: 10.1039/d0na00760a.
  • Palanisamy, S.; Tunakova, V.; Hu, S.; Yang, T.; Kremenakova, D.; Venkataraman, M.; Petru, M.; Militky, J. Electromagnetic Interference Shielding of Metal Coated Ultrathin Nonwoven Fabrics and Their Factorial Design. Polymers. (Basel) 2021, 13, 484. DOI: 10.3390/polym13040484.
  • Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E.; et al. Highly Stretchable Polymer Composite with Strain-Enhanced Electromagnetic Interference Shielding Effectiveness. Adv. Mater. 2020, 32, 1907499. DOI: 10.1002/adma.201907499.
  • Zou, K.; Yi, S.; Li, X.; Li, J.; Xu, Y.; Li, Z.-M.; Yan, D.-X.; Wang, H. Efficient Electromagnetic Interference Shielding of Flexible Ag Microfiber Sponge/Polydimethylsiloxane Composite Constructed by Blow Spinning. Compos. Sci. Technol. 2022, 220, 109281. DOI: 10.1016/j.compscitech.2022.109281.
  • Kausar, A.; Ahmad, S.; Salman, S. M. Effectiveness of Polystyrene/Carbon Nanotube Composite in Electromagnetic Interference Shielding Materials: A Review. Poly. Plast. Technol. Eng. 2017, 56, 1027–1042. DOI: 10.1080/03602559.2016.1266367.
  • Bagotia, N.; Choudhary, V.; Sharma, D. K. A Review on the Mechanical, Electrical and EMI Shielding Properties of Carbon Nanotubes and Graphene Reinforced Polycarbonate Nanocomposites. Poly. Adv. Techs. 2018, 29, 1547–1567. DOI: 10.1002/pat.4277.
  • Nazir, A. A Review of Polyvinylidene Fluoride (PVDF), Polyurethane (PU), and Polyaniline (PANI) Composites-Based Materials for Electromagnetic Interference Shielding. J. Thermoplast. Compos. Mater. 2020, 35, 1790–1810. DOI: 10.1177/0892705720925120.
  • George, E.; Joy, J.; Anas, S. Acrylonitrile-Based Polymer/Graphene Nanocomposites: A Review. Polym. Compos. 2021, 42, 4961–4980. DOI: 10.1002/pc.26224.
  • Yadav, S. K.; Schmalbach, K. M.; Kinaci, E.; Stanzione, J. F.; Palmese, G. R. Recent Advances in Plant-Based Vinyl Ester Resins and Reactive Diluents. Eur. Polym. J. 2018, 98, 199–215. DOI: 10.1016/j.eurpolymj.2017.11.002.
  • Lee, Y.; Zhang, H.; Yu, H.-Y.; Tam, K. C. Electroconductive Cellulose Nanocrystals—Synthesis, Properties and Applications: A Review. Carbohydr. Polym. 2022, 289, 119419. DOI: 10.1016/j.carbpol.2022.119419.
  • Zhang, J. J.; Qi, Y. P.; Shen, Y. F.; Li, H. Research Progress on Chemical Modification and Application of Cellulose: A Review. ms. 2022, 28, 60–67. DOI: 10.5755/j02.ms.25485.
  • Tu, H.; Zhu, M. X.; Duan, B.; Zhang, L. N. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. Adv. Mater. 2021, 33, 2000682. DOI: 10.1002/adma.202000682.
  • Zhang, C.; Mo, J.; Fu, Q.; Liu, Y.; Wang, S.; Nie, S. Wood-Cellulose-Fiber-Based Functional Materials for Triboelectric Nanogenerators. Nano Energy 2021, 81, 105637. DOI: 10.1016/j.nanoen.2020.105637.
  • Gray, D. G. Cellulose Nanocrystal Research; a Personal Perspective. Carbohydr. Polym. 2020, 250, 116888. DOI: 10.1016/j.carbpol.2020.116888.
  • Huang, H. D.; Liu, C. Y.; Zhou, D.; Jiang, X.; Zhong, G. J.; Yan, D. X.; Li, Z. M. Cellulose Composite Aerogel for Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. A 2015, 3, 4983–4991. DOI: 10.1039/C4TA05998K.
  • Fugetsu, B.; Sano, E.; Sunada, M.; Sambongi, Y.; Shibuya, T.; Wang, X. S.; Hiraki, T. Electrical Conductivity and Electromagnetic Interference Shielding Efficiency of Carbon Nanotube/Cellulose Composite Paper. Carbon 2008, 46, 1256–1258. DOI: 10.1016/j.carbon.2008.04.024.
  • Cui, C.; Xiang, C.; Geng, L.; Lai, X. X.; Guo, R. H.; Zhang, Y.; Xiao, H. Y.; Lan, J. W.; Lin, S. J.; Jiang, S. X. Flexible and Ultrathin Electrospun Regenerate Cellulose Nanofibers and d-Ti3C2Tx (MXene) Composite Film for Electromagnetic Interference Shielding. J. Alloys Compd. 2019, 788, 1246–1255. DOI: 10.1016/j.jallcom.2019.02.294.
  • Feng, C. P.; Wei, F.; Sun, K. Y.; Wang, Y.; Lan, H. B.; Shang, H. J.; Ding, F. Z.; Bai, L.; Yang, J.; Yang, W. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. Nanomicro. Lett. 2022, 14, 127. DOI: 10.1007/s40820-022-00868-8.
  • Cheng, Y.; Zhu, W.; Lu, X.; Wang, C. Recent Progress of Electrospun Nanofibrous Materials for Electromagnetic Interference Shielding. Compos. Commun. 2021, 27, 100823. DOI: 10.1016/j.coco.2021.100823.
  • Wang, M.; Tang, X.-H.; Cai, J.-H.; Wu, H.; Shen, J.-B.; Guo, S.-Y. Construction, Mechanism and Prospective of Conductive Polymer Composites with Multiple Interfaces for Electromagnetic Interference Shielding: A Review. Carbon 2021, 177, 377–402. DOI: 10.1016/j.carbon.2021.02.047.
  • Yuan, Q.; Ao, Z.; Xinxing, W.; Peng, M.; Yuzheng, X.; Susan, O.; Tongle, W.; Lei, L.; Bifa, F.; Shuxian, S. Acrylate Pressure-Sensitive Adhesives Tape as Cover Membrane for Preventing Ultrasound Probes from Cross-Infections. Surf. Interfaces 2021, 27, 101503. DOI: 10.1016/j.surfin.2021.101503.
  • Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for Electromagnetic Shielding: A Review. Adv. Funct. Mater. 2020, 30, 2000883. DOI: 10.1002/adfm.202000883.
  • Yu, W.; Wang, T.; Liu, Y.; Wang, Z.; Xu, L.; Tang, J.; Dai, K.; Duan, H.; Xu, J.; Li, Z. Superior and Highly Absorbed Electromagnetic Interference Shielding Performance Achieved by Designing the Reflection-Absorption-Integrated Shielding Compartment with Conductive Wall and Lossy Core. Chem. Eng. J. 2020, 393, 124644. DOI: 10.1016/j.cej.2020.124644.
  • Liu, S.; Qin, S.; Jiang, Y.; Song, P.; Wang, H. Lightweight High-Performance Carbon-Polymer Nanocomposites for Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manufact. 2021, 145, 106376. DOI: 10.1016/j.compositesa.2021.106376.
  • Devi, N.; Ray, S. S. Electromagnetic Interference Cognizance and Potential of Advanced Polymer Composites toward Electromagnetic Interference Shielding: A Review. Poly. Eng. Sci. 2022, 62, 591–621. DOI: 10.1002/pen.25876.
  • Gairola, P.; Purohit, L. P.; Gairola, S. P.; Bhardwaj, P.; Kaushik, S. Enhanced Electromagnetic Absorption in Ferrite and Tantalum Pentoxide Based Polypyrrole Nanocomposite. Progr. Nat. Sci. Mater. Int. 2019, 29, 170–176. DOI: 10.1016/j.pnsc.2019.03.011.
  • Yin, J.; Zhang, J.; Zhang, S.; Liu, C.; Yu, X.; Chen, L.; Song, Y.; Han, S.; Xi, M.; Zhang, C.; et al. Flexible 3D Porous Graphene Film Decorated with Nickel Nanoparticles for Absorption-Dominated Electromagnetic Interference Shielding. Chem. Eng. J. 2021, 421, 129763. DOI: 10.1016/j.cej.2021.129763.
  • Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in Electromagnetic Shielding Properties of Composite Foams. J. Mater. Chem. A 2021, 9, 8896–8949. DOI: 10.1039/D1TA00417D.
  • Zhang, F. D.; Ren, P. G.; Guo, H.; Zhang, Z. P.; Guo, Z. Z.; Dai, Z.; Lu, Z. X.; Jin, Y. L.; Ren, F. Flexible and Conductive Cellulose Composite Paper for Highly Efficient Electromagnetic Interference Shielding. Adv. Elect. Mater. 2021, 7, 2100496. DOI: 10.1002/aelm.202100496.
  • Peng, M.; Qin, F. Clarification of Basic Concepts for Electromagnetic Interference Shielding Effectiveness. J. Appl. Phys. 2021, 130, 225108. DOI: 10.1063/5.0075019.
  • Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review. Nanomicro. Lett. 2021, 13, 181. DOI: 10.1007/s40820-021-00707-2.
  • Zhu, R.; Li, Z.; Deng, G.; Yu, Y.; Shui, J.; Yu, R.; Pan, C.; Liu, X. Anisotropic Magnetic Liquid Metal Film for Wearable Wireless Electromagnetic Sensing and Smart Electromagnetic Interference Shielding. Nano Energy 2022, 92, 106700. DOI: 10.1016/j.nanoen.2021.106700.
  • Xu, Z.; Liang, M.; He, X.; Long, Q.; Yu, J.; Xie, K.; Liao, L. The Preparation of Carbonized Silk cocoon-Co-Graphene Composite and Its Enhanced Electromagnetic Interference Shielding Performance. Compos. Part A Appl. Sci. Manufact. 2019, 119, 111–118. DOI: 10.1016/j.compositesa.2019.01.026.
  • Wen, G.; Guo, Z. G. A Paper-Making Transformation: From Cellulose-Based Superwetting Paper to Biomimetic Multifunctional Inorganic Paper. J. Mater. Chem. A 2020, 8, 20238–20259. DOI: 10.1039/D0TA07518C.
  • Kumar, P.; Narayan Maiti, U.; Sikdar, A.; Kumar Das, T.; Kumar, A.; Sudarsan, V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019, 59, 687–738. DOI: 10.1080/15583724.2019.1625058.
  • Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L. C.; Bacabac, R. G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. DOI: 10.1007/s10570-020-03674-w.
  • Hausmann, M. K.; Siqueira, G.; Libanori, R.; Kokkinis, D.; Neels, A.; Zimmermann, T.; Studart, A. R. Complex-Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Adv. Funct. Mater. 2020, 30, 1904127. DOI: 10.1002/adfm.201904127.
  • Gu, H.; Gao, X.; Zhang, H.; Chen, K.; Peng, L. Fabrication and Characterization of Cellulose Nanoparticles from Maize Stalk Pith via Ultrasonic-Mediated Cationic Etherification. Ultrason. Sonochem. 2020, 66, 104932. DOI: 10.1016/j.ultsonch.2019.104932.
  • Jiang, Z.; Tang, L.; Gao, X.; Zhang, W.; Ma, J.; Zhang, L. Solvent Regulation Approach for Preparing Cellulose-Nanocrystal-Reinforced Regenerated Cellulose Fibers and Their Properties. ACS Omega. 2019, 4, 2001–2008. DOI: 10.1021/acsomega.8b03601.
  • Li, T.; Chen, C.; Brozena, A. H.; Zhu, J. Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O. J.; Isogai, A.; Wågberg, L.; Hu, L. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature 2021, 590, 47–56. DOI: 10.1038/s41586-020-03167-7.
  • Meirelles, A. A. D.; Costa, A. L. R.; Cunha, R. L. The Stabilizing Effect of Cellulose Crystals in O/W Emulsions Obtained by Ultrasound Process. Food Res. Int. 2020, 128, 108746. DOI: 10.1016/j.foodres.2019.108746.
  • Farooq, A.; Jiang, S.; Farooq, A.; Naeem, M. A.; Ahmad, A.; Liu, L. F. Structure and Properties of High Quality Natural Cellulose Nano Fibrils from a Novel Material Ficus Natalensis Barkcloth. J. Ind. Text. 2021, 51, 664–680. DOI: 10.1177/1528083719887533.
  • Jiao, X.; Li, H.; Cheng, X. Cellulose-Based Fluorescent Macromolecular Sensors and Their Ability in 2, 4, 6-Trinitrophenol Detection. Mater. Today Chem. 2021, 22, 100615. DOI: 10.1016/j.mtchem.2021.100615.
  • Stepanova, M.; Korzhikova-Vlakh, E. Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers. (Basel) 2022, 14, 1477. DOI: 10.3390/polym14071477.
  • Nyamayaro, K.; Keyvani, P.; D'Acierno, F.; Poisson, J.; Hudson, Z. M.; Michal, C. A.; Madden, J. D. W.; Hatzikiriakos, S. G.; Mehrkhodavandi, P. Toward Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystal–Agarose Hydrogel. ACS Appl. Mater. Interfaces. 2020, 12, 52182–52191. DOI: 10.1021/acsami.0c15601.
  • Yuan, Z.; Zhang, J.; Jiang, A.; Lv, W.; Wang, Y.; Geng, H.; Wang, J.; Qin, M. Fabrication of Cellulose Self-Assemblies and High-Strength Ordered Cellulose Films. Carbohydr. Polym. 2015, 117, 414–421. DOI: 10.1016/j.carbpol.2014.10.003.
  • Zhao, H.; Kwak, J. H.; Wang, Y.; Franz, J. A.; White, J. M.; Holladay, J. E. Interactions between Cellulose and N-methylmorpholine-N-Oxide. Carbohydr. Polym. 2007, 67, 97–103. DOI: 10.1016/j.carbpol.2006.04.019.
  • Song, Y. H.; Shi, Z. Q.; Hu, G. H.; Xiong, C. X.; Isogai, A.; Yang, Q. L. Recent Advances in Cellulose-Based Piezoelectric and Triboelectric Nanogenerators for Energy Harvesting: A Review. J. Mater. Chem. A 2021, 9, 1910–1937. DOI: 10.1039/D0TA08642H.
  • Kang, M. M.; Oderinde, O.; Han, X. L.; Fu, G. D.; Zhang, Z. H. Development of Oxidized Hydroxyethyl Cellulose-Based Hydrogel Enabling Unique Mechanical, Transparent and Photochromic Properties for Contact Lenses. Int. J. Biol. Macromol. 2021, 183, 1162–1173. DOI: 10.1016/j.ijbiomac.2021.05.029.
  • Mašková, E.; Kubová, K.; Raimi-Abraham, B. T.; Vllasaliu, D.; Vohlídalová, E.; Turánek, J.; Mašek, J. Hypromellose - A Traditional Pharmaceutical Excipient with Modern Applications in Oral and Oromucosal Drug Delivery. J. Control. Release 2020, 324, 695–727. DOI: 10.1016/j.jconrel.2020.05.045.
  • He, S. A.; Zhong, S. L.; Meng, Q. Y.; Fang, Y.; Dou, Y. M.; Gao, Y.; Cui, X. J. Sonochemical Preparation of Folate-Decorated Reductive-Responsive Carboxymethylcellulose-Based Nanocapsules for Targeted Drug Delivery. Carbohydr. Polym. 2021, 266, 118174. DOI: 10.1016/j.carbpol.2021.118174.
  • Bampidis, V.; Azimonti, G.; Bastos, M. D.; Christensen, H.; Dusemund, B.; Durjava, M. K.; Kouba, M.; Lopez-Alonso, M.; Puente, S. L.; Marcon, F.; et al. Safety and Efficacy of Methyl Cellulose for All Animal Species. Efsa J. 2020, 18, e06214. DOI: 10.2903/j.efsa.2020.6214.
  • Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Chen, W. S.; Wu, Y. Q.; Yu, H. P. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021, 33, 2000619. DOI: 10.1002/adma.202000619.
  • Wang, Z. H.; Lee, Y. H.; Kim, S. W.; Seo, J. Y.; Lee, S. Y.; Nyholm, L. Why Cellulose-Based Electrochemical Energy Storage Devices? Adv. Mater. 2021, 33, 2000892. DOI: 10.1002/adma.202000892.
  • Nypelö, T. Magnetic Cellulose: Does Extending Cellulose Versatility with Magnetic Functionality Facilitate Its Use in Devices? J. Mater. Chem. C 2022, 10, 805–818. DOI: 10.1039/D1TC02105B.
  • Sheng, A.; Ren, W.; Yang, Y.; Yan, D.-X.; Duan, H.; Zhao, G.; Liu, Y.; Li, Z.-M. Multilayer WPU Conductive Composites with Controllable Electro-Magnetic Gradient for Absorption-Dominated Electromagnetic Interference Shielding. Composit. Part A Appl. Sci. Manufact. 2020, 129, 105692. DOI: 10.1016/j.compositesa.2019.105692.
  • Luo, F.; Liu, D.; Cao, T.; Cheng, H.; Kuang, J.; Deng, Y.; Xie, W. Study on Broadband Microwave Absorbing Performance of Gradient Porous Structure. Adv. Compos. Hybrid Mater. 2021, 4, 591–601. DOI: 10.1007/s42114-021-00275-4.
  • Dai, X.; Guo, Z. G. The Gorgeous Transformation of Paper: From Cellulose Paper to Inorganic Paper to 2D Paper Materials with Multifunctional Properties. J. Mater. Chem. A 2022, 10, 122–156. DOI: 10.1039/D1TA08410K.
  • Kotov, N. A. Layered Biomimetic Composites from MXenes with Sequential Bridging. Angewandte Chemie-International Edition 2022, 61, e202114140.
  • Cao, W.; Ma, C.; Tan, S.; Ma, M.; Wan, P.; Chen, F. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nanomicro. Lett. 2019, 11, 72. DOI: 10.1007/s40820-019-0304-y.
  • Zhu, M.; Yan, X.; Xu, H.; Xu, Y.; Kong, L. Highly Conductive and Flexible Bilayered MXene/Cellulose Paper Sheet for Efficient Electromagnetic Interference Shielding Applications. Ceram. Int. 2021, 47, 17234–17244. DOI: 10.1016/j.ceramint.2021.03.034.
  • Park, J.; Kwac, L. K.; Kim, H. G.; Shin, H. K. Carbon Papers from Tall Goldenrod Cellulose Fibers and Carbon Nanotubes for Application as Electromagnetic Interference Shielding Materials. Molecules 2022, 27, 1842. DOI: 10.3390/molecules27061842.
  • Luo, H.; Xie, J.; Xiong, L.; Zhu, Y.; Yang, Z.; Wan, Y. Fabrication of Flexible, Ultra-Strong, and Highly Conductive Bacterial Cellulose-Based Paper by Engineering Dispersion of Graphene Nanosheets. Compos. Part B Eng. 2019, 162, 484–490. DOI: 10.1016/j.compositesb.2019.01.027.
  • Zhang, Z.; Jiang, P.; Wai, P. T.; Feng, S.; Lu, M.; Zhang, P.; Leng, Y.; Pan, L.; Pan, J. Construction and Synthesis of High-Stability Biobased Oligomeric Lactate Plasticizer: Applicable to PVC and PLA Polymers. Ind. Eng. Chem. Res. 2022, 61, 12931–12941. DOI: 10.1021/acs.iecr.2c02137.
  • Wang, L.; Chen, C.; Wang, J. W.; Gardner, D. J.; Tajvidi, M. Cellulose Nanofibrils versus Cellulose Nanocrystals: Comparison of Performance in Flexible Multilayer Films for Packaging Applications. Food Packag. Shelf Life 2020, 23, 100464. DOI: 10.1016/j.fpsl.2020.100464.
  • Liu, X.; Xiao, W.; Ma, X.; Huang, L.; Ni, Y.; Chen, L.; Ouyang, X.; Li, J. Conductive Regenerated Cellulose Film and Its Electronic Devices – a Review. Carbohydr. Polym. 2020, 250, 116969. DOI: 10.1016/j.carbpol.2020.116969.
  • Mayer, S.; Tallawi, M.; De Luca, I.; Calarco, A.; Reinhardt, N.; Gray, L. A.; Drechsler, K.; Moeini, A.; Germann, N. Antimicrobial and Physicochemical Characterization of 2,3-Dialdehyde Cellulose-Based Wound Dressings Systems. Carbohydr. Polym. 2021, 272, 118506. DOI: 10.1016/j.carbpol.2021.118506.
  • Li, L.; Ma, Z. G.; Xu, P. H.; Zhou, B.; Li, Q. T.; Ma, J. M.; He, C. G.; Feng, Y. Z.; Liu, C. T. Flexible and Alternant-Layered Cellulose Nanofiber/Graphene Film with Superior Thermal Conductivity and Efficient Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manufact. 2020, 139, 106134. DOI: 10.1016/j.compositesa.2020.106134.
  • Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An Asymmetric Sandwich Structural Cellulose-Based Film with Self-Supported MXene and AgNW Layers for Flexible Electromagnetic Interference Shielding and Thermal Management. Nanoscale 2021, 13, 2378–2388. DOI: 10.1039/d0nr07840a.
  • Hu, G.; Wu, C.; Wang, Q.; Dong, F.; Xiong, Y. Ultrathin Nanocomposite Films with Asymmetric Gradient Alternating Multilayer Structures Exhibit Superhigh Electromagnetic Interference Shielding Performances and Robust Mechanical Properties. Chem. Eng. J. 2022, 447, 137537. DOI: 10.1016/j.cej.2022.137537.
  • Zhang, K.; Gu, X.; Dai, Q.; Yuan, B.; Yan, Y.; Guo, M. Flexible Polyaniline-Coated Poplar Fiber Composite Membranes with Effective Electromagnetic Shielding Performance. Vacuum 2019, 170, 108990. DOI: 10.1016/j.vacuum.2019.108990.
  • Lim, G.-H.; Kwon, N.; Han, E.; Bok, S.; Lee, S.-E.; Lim, B. Flexible Nanoporous Silver Membranes with Unprecedented High Effectiveness for Electromagnetic Interference Shielding. J. Ind. Eng. Chem. 2021, 93, 245–252. DOI: 10.1016/j.jiec.2020.09.030.
  • Wang, B.; Li, Y.; Zhang, W.; Sun, J.; Zhao, J.; Xu, Y.; Liu, Y.; Guo, H.; Zhang, D. Ultrathin Cellulose Nanofiber/Carbon Nanotube/Ti3C2Tx Film for Electromagnetic Interference Shielding and Energy Storage. Carbohydr. Polym. 2022, 286, 119302. DOI: 10.1016/j.carbpol.2022.119302.
  • Liu, Z. J.; Ran, Y. Y.; Xi, J. N.; Wang, J. Polymeric Hybrid Aerogels and Their Biomedical Applications. Soft Matter. 2020, 16, 9160–9175. DOI: 10.1039/d0sm01261k.
  • Wang, J.; Wang, J. Advances on Dimensional Structure Designs and Functional Applications of Aerogels. Acta Chim. Sinica 2021, 79, 430–442. DOI: 10.6023/A20110531.
  • Chen, Y. M.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W. H.; Duan, G. G.; Jiang, S. H.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. DOI: 10.1002/adma.202005569.
  • Pai, A. R.; Binumol, T.; Gopakumar, D. A.; Pasquini, D.; Seantier, B.; Kalarikkal, N.; Thomas, S. Flexible and Ultrathin Electrospun Regenerate Cellulose Nanofibers and d-Ti3C2Tx (MXene) Composite Film for Electromagnetic Interference Shielding. Carbohydr. Polym. 2020, 246, 116663. DOI: 10.1016/j.carbpol.2020.116663.
  • Chen, Y.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. Multifunctional Cellulose/rGO/Fe3O4 Composite Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2020, 12, 22088–22098. DOI: 10.1021/acsami.9b23052.
  • Zong, Z.; Ren, P.; Guo, Z.; Wang, J.; Chen, Z.; Jin, Y.; Ren, F. Three-Dimensional Macroporous Hybrid Carbon Aerogel with Heterogeneous Structure Derived from MXene/Cellulose Aerogel for Absorption-Dominant Electromagnetic Interference Shielding and Excellent Thermal Insulation Performance. J. Colloid Interface Sci. 2022, 619, 96–105. DOI: 10.1016/j.jcis.2022.03.136.
  • Cheng, J.; Li, C.; Xiong, Y.; Zhang, H.; Raza, H.; Ullah, S.; Wu, J.; Zheng, G.; Cao, Q.; Zhang, D.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nanomicro. Lett. 2022, 14, 80. DOI: 10.1007/s40820-022-00823-7.
  • Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L. Review of the Recent Developments in All-Cellulose Nanocomposites: Properties and Applications. Carbohydr. Polym. 2022, 286, 119192. DOI: 10.1016/j.carbpol.2022.119192.
  • Cui, S. Q.; Song, N.; Shi, L. Y.; Ding, P. Enhanced Thermal Conductivity of Bioinspired Nanofibrillated Cellulose Hybrid Films Based on Graphene Sheets and Nanodiamonds. ACS Sustainable Chem. Eng. 2020, 8, 6363–6370. DOI: 10.1021/acssuschemeng.0c00420.
  • Jiao, D.; Song, N.; Ding, P.; Shi, L. Enhanced Thermal Conductivity in Oriented Cellulose Nanofibril/Graphene Composites via Interfacial Engineering. Compos. Commun. 2022, 31, 101101. DOI: 10.1016/j.coco.2022.101101.
  • Zhao, L.; Wang, L.; Jin, Y.; Ren, J.; Wang, Z.; Jia, L. Simultaneously Improved Thermal Conductivity and Mechanical Properties of Boron Nitride Nanosheets/Aramid Nanofiber Films by Constructing Multilayer Gradient Structure. Compos. Part B Eng. 2022, 229, 109454. DOI: 10.1016/j.compositesb.2021.109454.
  • Sato, K.; Tominaga, Y.; Imai, Y. Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices: A Review. Nanomaterials 2020, 10, 448. DOI: 10.3390/nano10030448.
  • Fan, M.; Chen, R.; Lu, Y.; Liu, R.; Ma, Y.; Zhao, Q.; Ran, S.; Tang, P.; Bin, Y. Flexible Microfibrillated Cellulose/Carbon Nanotube Multilayered Composite Films with Electromagnetic Interference Shielding and Thermal Conductivity. Compos. Commun. 2022, 35, 101293. DOI: 10.1016/j.coco.2022.101293.
  • Zhang, Y. H.; Hao, N. K.; Lin, X. J.; Nie, S. X. Emerging Challenges in the Thermal Management of Cellulose Nanofibril-Based Supercapacitors, Lithium-Ion Batteries and Solar Cells: A Review. Carbohydr. Polym. 2020, 234, 115888. DOI: 10.1016/j.carbpol.2020.115888.
  • Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS Appl. Mater. Interfaces. 2020, 12, 18023–18031. DOI: 10.1021/acsami.0c04482.
  • Liu, Q.; Zhang, Y.; Liu, Y.; Liu, Z.; Zhang, B.; Zhang, Q. Ultrathin, Biomimetic Multifunctional Leaf-like Silver Nanowires/Ti3C2Tx MXene/Cellulose Nanofibrils Nanocomposite Film for High-Performance Electromagnetic Interference Shielding and Thermal Management. J. Alloys Compd. 2021, 860, 158151. DOI: 10.1016/j.jallcom.2020.158151.
  • Zhang, Y.; Zhang, Z.; Yang, J.; Yue, Y.; Zhang, H. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer. Nanomaterials 2021, 12, 44. DOI: 10.3390/nano12010044.
  • Hooda, A.; Goyat, M. S.; Pandey, J. K.; Kumar, A.; Gupta, R. A Review on Fundamentals, Constraints and Fabrication Techniques of Superhydrophobic Coatings. Prog. Org. Coat. 2020, 142, 105557. DOI: 10.1016/j.porgcoat.2020.105557.
  • Yong, H. Y.; Li, Z. L.; Huang, X. B.; Wang, K. X.; Zhou, Y. N.; Li, Q. X.; Shi, J. J.; Liu, M.; Zhou, D. Z. Superhydrophobic Materials: Versatility and Translational Applications. Adv. Materials Inter. 2022, 9, 2200435. DOI: 10.1002/admi.202200435.
  • Liu, R. T.; Wang, D. Y.; Xie, Y. J.; Li, J.; Wang, L. J. Flexible Cellulose-Based Material with a Higher Conductivity and Electromagnetic Shielding Performance from Electroless Nickel Plating. Wood Sci. Technol. 2021, 55, 1693–1710. DOI: 10.1007/s00226-021-01297-3.
  • Hong, S.; Yoo, S. S.; Lee, J. Y.; Yoo, P. J. Sonochemically Activated Synthesis of Gradationally Complexed Ag/TEMPO-Oxidized Cellulose for Multifunctional Textiles with High Electrical Conductivity, Super-Hydrophobicity, and Efficient EMI Shielding. J. Mater. Chem. C 2020, 8, 13990–13998. DOI: 10.1039/D0TC02483J.
  • Li, E.; Pan, Y.; Wang, C.; Liu, C.; Shen, C.; Pan, C.; Liu, X. Multifunctional and Superhydrophobic Cellulose Composite Paper for Electromagnetic Shielding, Hydraulic Triboelectric Nanogenerator and Joule Heating Applications. Chem. Eng. J. 2021, 420, 129864. DOI: 10.1016/j.cej.2021.129864.
  • Xu, H.; Liu, D.; Song, Y.; Xie, Y.; Shi, Z.; Xiong, C.; Yang, Q. Ultra-Sensitive and Flexible Electronic Skin from Nanocellulose/AgNWs Hydrogel Films with Highly Transparent, Antibacterial and Electromagnetic Shielding Properties. Compos. Sci. Technol. 2022, 228, 109679. DOI: 10.1016/j.compscitech.2022.109679.
  • Zhang, Y.; Yu, J.; Lu, J.; Zhu, C.; Qi, D. Facile Construction of 2D MXene (Ti3C2Tx) Based Aerogels with Effective Fire-Resistance and Electromagnetic Interference Shielding Performance. J. Alloys Compd. 2021, 870, 159442. DOI: 10.1016/j.jallcom.2021.159442.
  • Li, Y.; Chen, Y.; He, X.; Xiang, Z.; Heinze, T.; Qi, H. Lignocellulose Nanofibril/Gelatin/MXene Composite Aerogel with Fire-Warning Properties for Enhanced Electromagnetic Interference Shielding Performance. Chem. Eng. J. 2022, 431, 133907. DOI: 10.1016/j.cej.2021.133907.
  • Zhou, Z.; Liang, Y.; Huang, H.; Li, L.; Yang, B.; Li, M.; Yan, D.; Lei, J.; Li, Z. Structuring Dense Three-Dimensional Sheet-like Skeleton Networks in Biomass-Derived Carbon Aerogels for Efficient Electromagnetic Interference Shielding. Carbon 2019, 152, 316–324. DOI: 10.1016/j.carbon.2019.06.027.
  • Pitkänen, O.; Tolvanen, J.; Szenti, I.; Kukovecz, Á.; Hannu, J.; Jantunen, H.; Kordas, K. Lightweight Hierarchical Carbon Nanocomposites with Highly Efficient and Tunable Electromagnetic Interference Shielding Properties. ACS Appl. Mater. Interfaces. 2019, 11, 19331–19338. DOI: 10.1021/acsami.9b02309.
  • Chen, Y.; Zhang, L.; Mei, C.; Li, Y.; Duan, G.; Agarwal, S.; Greiner, A.; Ma, C.; Jiang, S. Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. ACS Appl. Mater. Interfaces. 2020, 12, 35513–35522. DOI: 10.1021/acsami.0c10645.
  • Zeng, Z.; Wu, T.; Han, D.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano. 2020, 14, 2927–2938. DOI: 10.1021/acsnano.9b07452.
  • Zeng, Z.; Wang, C.; Siqueira, G.; Han, D.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C.; Nyström, G. Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance. Adv. Sci. (Weinh) 2020, 7, 2000979. DOI: 10.1002/advs.202000979.
  • Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano. 2018, 12, 4583–4593. DOI: 10.1021/acsnano.8b00997.
  • Zhou, B.; Zhang, Z.; Li, Y.; Han, G.; Feng, Y.; Wang, B.; Zhang, D.; Ma, J.; Liu, C. Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Appl. Mater. Interfaces. 2020, 12, 4895–4905. DOI: 10.1021/acsami.9b19768.
  • Li, Y.; Chen, Y.; Liu, Y.; Zhang, C.; Qi, H. Holocellulose Nanofibrils Assisted Exfoliation to Prepare MXene-Based Composite Film with Excellent Electromagnetic Interference Shielding Performance. Carbohydr. Polym. 2021, 274, 118652. DOI: 10.1016/j.carbpol.2021.118652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.