104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning unveils the complex nonlinearity of concrete materials’ uniaxial compressive strength

, , , &
Received 16 Feb 2024, Accepted 11 Apr 2024, Published online: 25 Apr 2024

References

  • Abd Elaty MAA. 2014. Compressive strength prediction of Portland cement concrete with age using a new model. HBRC J. 10(2):145–155. doi: 10.1016/j.hbrcj.2013.09.005.
  • ACI 318R-19. 2019. Building code requirements for structural concrete: (ACI 318-19) and commentary (ACI 318R-19).
  • Adhikari B, Shrestha A, Bhandari A, Sah AK, Belbase A, Paudel S. 2023. Evaluation and comparison on performance evaluation of polymer brick utilizing plastic waste with local sourced burnt bricks. I-Manager’s J Struct Eng. 12(2):23.
  • Ahmad A, Farooq F, Niewiadomski P, Ostrowski K, Akbar A, Aslam F, Alyousef R. 2021. Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials. 14(4):794. doi: 10.3390/ma14040794.
  • Ahmad SA, Rafiq SK, Ahmed HU, Abdulrahman AS, Ramezanianpour AM. 2023. Innovative soft computing techniques including artificial neural network and nonlinear regression models to predict the compressive strength of environmentally friendly concrete incorporating waste glass powder. Innov Infrastruct Solut. 8(4):119. doi: 10.1007/s41062-023-01089-7.
  • Ahmed HU, Mohammed AA, Mohammed A. 2022. Soft computing models to predict the compressive strength of GGBS/FA-geopolymer concrete. PLoS One. 17(5):e0265846. doi: 10.1371/journal.pone.0265846.
  • Armaghani DJ, Asteris PG. 2021. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Comput Appl. 33(9):4501–4532. doi: 10.1007/s00521-020-05244-4.
  • Armaghani DJ, Hatzigeorgiou GD, Karamani C, Skentou A, Zoumpoulaki I, Asteris PG. 2019. Soft computing-based techniques for concrete beams shear strength. Procedia Struct Integrity. 17:924–933. doi: 10.1016/j.prostr.2019.08.123.
  • Asteris PG, Armaghani DJ, Hatzigeorgiou GD, Karayannis CG, Pilakoutas K. 2019. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Comput Concrete Int J. 24(5):469–488.
  • Asteris PG, Koopialipoor M, Armaghani DJ, Kotsonis EA, Lourenço PB. 2021. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput Appl. 33(19):13089–13121. doi: 10.1007/s00521-021-06004-8.
  • Asteris PG, Mokos VG. 2020. Concrete compressive strength using artificial neural networks. Neural Comput Appl. 32(15):11807–11826. doi: 10.1007/s00521-019-04663-2.
  • Asteris PG, Skentou AD, Bardhan A, Samui P, Pilakoutas K. 2021. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem Concr Res. 145:106449. doi: 10.1016/j.cemconres.2021.106449.
  • Asteris PG, Gandomi AH, Armaghani DJ, Kokoris S, Papandreadi AT, Roumelioti A, Papanikolaou S, Tsoukalas MZ, Triantafyllidis L, Koutras EI, et al. 2024. Prognosis of COVID-19 severity using DERGA, a novel machine learning algorithm. Eur J Intern Med. doi: 10.1016/j.ejim.2024.02.037.
  • Bahedh MA, Jaafar MS. 2018. Ultra high-performance concrete utilizing fly ash as cement replacement under autoclaving technique. Case Stud Constr Mater. 9:e00202. doi: 10.1016/j.cscm.2018.e00202.
  • Barcelo L, Kline J, Walenta G, Gartner E. 2014. Cement and carbon emissions. Mater Struct. 47(6):1055–1065. doi: 10.1617/s11527-013-0114-5.
  • Bardhan A, Biswas R, Kardani N, Iqbal M, Samui P, Singh MP, Asteris PG. 2022. A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Constr Build Mater. 337:127454. doi: 10.1016/j.conbuildmat.2022.127454.
  • Bardhan A, Gokceoglu C, Burman A, Samui P, Asteris PG. 2021. Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Eng Geol. 291:106239. doi: 10.1016/j.enggeo.2021.106239.
  • Batayneh M, Marie I, Asi I. 2007. Use of selected waste materials in concrete mixes. Waste Manag. 27(12):1870–1876. doi: 10.1016/j.wasman.2006.07.026.
  • Bhusal B, Paudel S, Tanapornraweekit G, Maskey PN, Tangtermsirikul S. 2023. Seismic performance evaluation and strengthening of RC beam-column joints adopted in Nepal. Structures. 57(4):105205. doi: 10.1016/j.istruc.2023.105205.
  • Bhusal B, Pradhananga A, Paudel S, Najam FA. 2024. Evaluating and strengthening low-rise reinforced concrete buildings constructed in Nepal. Structures. 63:106388. doi: 10.1016/j.istruc.2024.106388.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140. doi: 10.1007/BF00058655.
  • Breiman L. 2001. Random forests. Machine Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Bu L, Du G, Hou Q. 2021. Prediction of the compressive strength of recycled aggregate concrete based on artificial neural network. Materials. 14(14):3921. doi: 10.3390/ma14143921.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, p. 785–794.
  • Chengsheng T, Huacheng L, Bing X. 2017. AdaBoost typical algorithm and its application research. MATEC Web Conf. 139:00222. doi: 10.1051/matecconf/201713900222.
  • Chithra S, Kumar SS, Chinnaraju K, Ashmita FA. 2016. A comparative study on the compressive strength prediction models for high performance concrete containing nano silica and copper slag using regression analysis and artificial neural networks. Constr Build Mater. 114:528–535. doi: 10.1016/j.conbuildmat.2016.03.214.
  • Chopra P, Sharma RK, Kumar M. 2014. Regression models for the prediction of compressive strength of concrete with & without fly ash. Int J Latest Trends Eng Tech (IJLTET). 3(4):400–406.
  • Chrysos G, Dagritzikos P, Papaefstathiou I, Dollas A. 2013. HC-CART: a parallel system implementation of data mining classification and regression tree (CART) algorithm on a multi-FPGA system. ACM Trans Archit Code Optim. 9(4):1–25. doi: 10.1145/2400682.2400706.
  • Chu S-C, Tsai P-W. 2007. Computational intelligence based on the behavior of cats. Int J Innov Comput Info Control. 3(1):163–173.
  • Cotsovos DM, Pavlović MN. 2008. Numerical investigation of concrete subjected to compressive impact loading. Part 2: parametric investigation of factors affecting behaviour at high loading rates. Comput Struct. 86(1–2):164–180. doi: 10.1016/j.compstruc.2007.05.015.
  • Czarnecki S, Shariq M, Nikoo M, Sadowski Ł. 2021. An intelligent model for the prediction of the compressive strength of cementitious composites with ground granulated blast furnace slag based on ultrasonic pulse velocity measurements. Measurement. 172:108951. doi: 10.1016/j.measurement.2020.108951.
  • Degtyarev VV, Tsavdaridis KD. 2022. Buckling and ultimate load prediction models for perforated steel beams using machine learning algorithms. J Build Eng. 51:104316. doi: 10.1016/j.jobe.2022.104316.
  • Dietterich TG. 2000. Ensemble methods in machine learning. Multiple classifier systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1, p. 1–15.
  • Faraj RH, Mohammed AA, Omer KM, Ahmed HU. 2022. Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes. Clean Technol Environ Policy. 24(7):2253–2281. doi: 10.1007/s10098-022-02318-w.
  • Gandomi AH, Babanajad SK, Alavi AH, Farnam Y. 2012. Novel approach to strength modeling of concrete under triaxial compression. J Mater Civ Eng. 24(9):1132–1143. doi: 10.1061/(ASCE)MT.1943-5533.0000494.
  • Gartner E. 2004. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 34(9):1489–1498. doi: 10.1016/j.cemconres.2004.01.021.
  • Hilt DE, Seegrist DW. 1977. Ridge, a computer program for calculating ridge regression estimates. Upper Darby (PA): Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.
  • Ho TK. 1995. Random decision forests. Proc 3rd Int Conf Document Anal Recog. 1:278–282.
  • Kajaste R, Hurme M. 2016. Cement industry greenhouse gas emissions–management options and abatement cost. J Cleaner Prod. 112:4041–4052. doi: 10.1016/j.jclepro.2015.07.055.
  • Kashem A, Das P. 2023. Compressive strength prediction of high-strength concrete using hybrid machine learning approaches by incorporating SHAP analysis. Asian J Civ Eng. 24(8):3243–3263. doi: 10.1007/s42107-023-00707-0.
  • Khan MA, Memon SA, Farooq F, Javed MF, Aslam F, Alyousef R. 2021. Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest. Adv Civ Eng. 2021:1–17. doi: 10.1155/2021/6618407.
  • Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI. 14(2):1137–1145.
  • Kostić S, Vasović D. 2015. Prediction model for compressive strength of basic concrete mixture using artificial neural networks. Neural Comput Applic. 26(5):1005–1024. doi: 10.1007/s00521-014-1763-1.
  • Li D, Tang Z, Kang Q, Zhang X, Li Y. 2023. Machine learning-based method for predicting compressive strength of concrete. Processes. 11(2):390. doi: 10.3390/pr11020390.
  • Loh W-Y. 2011. Classification and regression trees. WIREs Data Min Knowl. 1(1):14–23. doi: 10.1002/widm.8.
  • Mahjoubi S, Meng W, Bao Y. 2022. Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC). Appl Soft Comput. 115:108182. doi: 10.1016/j.asoc.2021.108182.
  • Naderpour H, Rafiean AH, Fakharian P. 2018. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J Build Eng. 16:213–219. doi: 10.1016/j.jobe.2018.01.007.
  • Nath P, Sarker P. 2011. Effect of fly ash on the durability properties of high strength concrete. Procedia Eng. 14:1149–1156. doi: 10.1016/j.proeng.2011.07.144.
  • Paudel S, Bhusal B. 2021. Investigation of modelling approaches for non-linear analysis of reinforced concrete frames. J Eng Sci Tech Rev. 14(2):61–72.
  • Paudel S. 2022. Experimental and numerical studies on composite structures under lateral cyclic loading: precast L-plate encased composite columns and wide U beam-column joints. Thailand: Thammasat University.
  • Paudel S, Pudasaini A, Shrestha RK, Kharel E. 2023. Compressive strength of concrete material using machine learning techniques. Cleaner Eng Tech. 15:100661. doi: 10.1016/j.clet.2023.100661.
  • Paudel S, Tanapornraweekit G, Tangtermsirikul S. 2021a. Numerical investigation of concrete filled hollow precast composite columns subjected to lateral cyclic loading. Eng Struct. 252:113586. doi: 10.1016/j.engstruct.2021.113586.
  • Paudel S, Tanapornraweekit G, Tangtermsirikul S. 2021b. Numerical study on seismic performance improvement of composite wide beam-column interior joints. J Build Eng. 46:103637. doi: 10.1016/j.jobe.2021.103637.
  • Paudel S. 2023. Investigation of modelling approaches to study the structural performance of 3D printed plain wall under uniform axial compression. Adv Struct Eng. 26(10):1911–1928. doi: 10.1177/13694332231166566.
  • Phul AA, Memon MJ, Shah SNR, Sandhu AR. 2019. GGBS and fly ash effects on compressive strength by partial replacement of cement concrete. Civ Eng J. 5(4):913–921. doi: 10.28991/cej-2019-03091299.
  • Rajakarunakaran SA, Lourdu AR, Muthusamy S, Panchal H, Jawad Alrubaie A, Musa Jaber M, Ali MH, Tlili I, Maseleno A, Majdi A, et al. 2022. Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques. Adv Eng Softw. 173:103267. doi: 10.1016/j.advengsoft.2022.103267.
  • Salau MA, Busari AO. 2015. Effect of different coarse aggregate sizes on the strength characteristics of laterized concrete. IOP Conf Ser: Mater Sci Eng. 96(1):012079. doi: 10.1088/1757-899X/96/1/012079.
  • Shubbar AA, Jafer H, Dulaimi A, Hashim K, Atherton W, Sadique M. 2018. The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: an experimental and statistical approach. Constr Build Mater. 187:1051–1060. doi: 10.1016/j.conbuildmat.2018.08.021.
  • Song H, Ahmad A, Farooq F, Ostrowski KA, Maślak M, Czarnecki S, Aslam F. 2021. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr Build Mater. 308:125021. doi: 10.1016/j.conbuildmat.2021.125021.
  • Tanapornraweekit G, Jiramarootapong P, Paudel S, Tangtermsirikul S, Snguanyat C. 2022. Experimental and numerical investigation of 3D-printed mortar walls under uniform axial compression. Constr Build Mater. 360:129552. doi: 10.1016/j.conbuildmat.2022.129552.
  • Topçu İB, Sarıdemir M. 2008. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput Mater Sci. 41(3):305–311. doi: 10.1016/j.commatsci.2007.04.009.
  • Wangler T, Roussel N, Bos FP, Salet TA, Flatt RJ. 2019. Digital concrete: a review. Cem Concr Res. 123:105780. doi: 10.1016/j.cemconres.2019.105780.
  • Williams B, Halloin C, Löbel W, Finklea F, Lipke E, Zweigerdt R, Cremaschi S. 2020. Data-driven model development for cardiomyocyte production experimental failure prediction. In Computer Aided Chemical Engineering. Vol. 48. Netherland: Elsevier; p. 1639–1644. doi: 10.1016/B978-0-12-823377-1.50274-3.
  • Wold S, Ruhe A, Wold H, Dunn I. 1984. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci and Stat Comput. 5(3):735–743. doi: 10.1137/0905052.
  • Yu Y, Li W, Li J, Nguyen TN. 2018. A novel optimised self-learning method for compressive strength prediction of high performance concrete. Constr Build Mater. 184:229–247. doi: 10.1016/j.conbuildmat.2018.06.219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.