717
Views
0
CrossRef citations to date
0
Altmetric
2024 Special Issue

Fabrication strategies of flexible light sources based on micro/nano III-nitride LEDs

, , &
Pages 61-73 | Received 21 Dec 2023, Accepted 21 Jan 2024, Published online: 05 Feb 2024

References

  • G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, Performance of high-power III-nitride light emitting diodes, Phys Status Solidi (A). 205 (5), 1086–1092 (2008).
  • S.P. Denbaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J.S. Speck, and S. Nakamura, Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays, Acta Mater. 61 (3), 945–951 (2013). doi:10.1016/j.actamat.2012.10.042
  • M. Kuball, F. Demangeot, J. Frandon, M. Renucci, and N. Grandjean, Thermal stability of GaN investigated by Raman scattering, MRS Online Proceedings Library (OPL). 537 (Symposium G – GaN and Related Alloys), G6–28 (1999).
  • S.C. Vartuli, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, F. Ren, J.C. Zolper, and R.J. Shul, Wet chemical etching survey of III-nitrides, MRS Online Proceedings Library (OPL). 483 (Symposium E – Power Semiconductor Materials & Devices), 275–270 (1997).
  • R. Nowak, M. Pessa, M. Suganuma, M. Leszczynski, I. Grzegory, S. Porowski, and F. Yoshida, Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal, Appl Phys Lett. 75 (14), 2070–2072 (1999). doi:10.1063/1.124919
  • M. Javad Mirshojaeian Hosseini, and R.A. Nawrocki, A review of the progress of thin-film transistors and their technologies for flexible electronics, Micromachines. 12 (6), 655 (2021). doi:10.3390/mi12060655
  • Y. Wyser, C. Pelletier, and J. Lange, Predicting and determining the bending stiffness of thin films and laminates, Packaging Technol Sci. 14 (3), 97–108 (2001). doi:10.1002/pts.540
  • H.G. Yoo, K.I. Park, M. Koo, S. Kim, S.Y. Lee, S.H. Lee, and K.J. Lee, Flexible GaN LED on a polyimide substrate for display applications. In: Quantum Sensing and Nanophotonic Devices IX. Vol 8268. SPIE; 2012:82681Y.
  • M. Asad, Q. Li, M. Sachdev, and W.S. Wong, Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates, Nano Energy. 73, 104724 (2020). doi:10.1016/j.nanoen.2020.104724
  • S. Zhang, Y. Yan, T. Feng, Y. Yin, F. Ren, M. Liang, C. Wu, X. Yi, J. Wang, J. Li, and Z. Liu, Wafer-scale semipolar micro-pyramid lighting-emitting diode array, Crystals. 11 (6), 686 (2021).
  • L. Dupré, M. Marra, V. Verney, B. Aventurier, F. Henry, F. Olivier, S. Tirano, A. Daami, and F. Templier, Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications. In: Gallium Nitride Materials and Devices XII. Vol 10104. (SPIE; 2017), p. 1010422.
  • J.B. Park, K.H. Lee, S.H. Han, T.H. Chung, M.K. Kwak, H. Rho, T. Jeong, and J.-S. Ha, Stable and efficient transfer-printing including repair using a GaN-based microscale light-emitting diode array for deformable displays, Sci Rep. 9, 11551 (2019).
  • A. Dussaigne, F. Barbier, H. Haas, J.-C. Pillet, B. Samuel, G. Veux, and P. Le Maitre, Native InGaN red-green-blue micro-LEDs for full color micro-displays. In: Light-Emitting Devices, Materials, and Applications XXVII. (SPIE; 2023).
  • J.E. Ryu, S. Park, Y. Park, S.W. Ryu, K. Hwang, and H.W. Jang, Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays, Advanced Materials. 35 (43), 2204947 (2023).
  • A.R. Anwar, M.T. Sajjad, M.A. Johar, C.A. Hernández-Gutiérrez, M. Usman, and S.P. Łepkowski, Recent progress in micro-LED-based display technologies, Laser Photon Rev. 16 (6), 2100427 (2022). doi:10.1002/lpor.202100427
  • T.Y. Lee, L.Y. Chen, Y.Y. Lo, S.S. Swayamprabha, A. Kumar, Y.-M. Huang, S.-C. Chen, H.-W. Zan, F.-C. Chen, R.-H. Horng, and H.-C. Kuo, Technology and applications of micro-LEDs: their characteristics, fabrication, advancement, and challenges, ACS Photonics. 9 (9), 2905–2930 (2022). doi:10.1021/acsphotonics.2c00285
  • B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Riley, and M.P. Ryan, Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation, J Mater Chem. 21 (34), 12949–12957 (2011). doi:10.1039/c1jm11225b
  • A.C. Cruickshank, S.E.R. Tay, B.N. Illy, R. Da Campo, S. Schumann, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Riley, and M.P. Ryan, Electrodeposition of ZnO nanostructures on molecular thin films, Chem. Mater. 23 (17), 3863–3870 (2011). doi:10.1021/cm200764h
  • X. Wang, and A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN, Prog. Cryst. Growth Charact. Mater. 48-49, 42–103 (2004). doi:10.1016/j.pcrysgrow.2005.03.002
  • I.M. Watson, Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: a key chemical technology for advanced deviceapplications, Coord Chem Rev. 257 (13-14), 2120–2141 (2013). doi:10.1016/j.ccr.2012.10.020
  • C.F. Chu, F.I. Lai, J.T. Chu, C.-C. Yu, C.-F. Lin, H.-C. Kuo, and S.C. Wang, Study of GaN light-emitting diodes fabricated by laser lift-off technique, J Appl Phys. 95 (8), 3916–3922 (2004). doi:10.1063/1.1651338
  • N. Yulianto, A.D. Refino, A. Syring, N. Majid, S. Mariana, P. Schnell, R.A. Wahyuono, K. Triyana, F. Meierhofer, W. Daum, F.F. Abdi, T. Voss, H.S. Wasisto, and A. Waag, Wafer-scale transfer route for top–down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique, Microsyst Nanoeng. 7, 32 (2021). doi:10.1038/s41378-021-00257-y
  • W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, and N.M. Johnson, Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off, Appl Phys Lett. 75 (10), 1360–1362 (1999). doi:10.1063/1.124693
  • S.H. Lee, S.Y. Park, and K.J. Lee. Laser lift-off of GaN thin film and its application to the flexible light emitting diodes. In: Biosensing and Nanomedicine V. Vol 8460 (SPIE; 2012), p. 846011.
  • J. Chun, Y. Hwang, Y.S. Choi, T. Jeong, J.H. Baek, H.C. Ko, and S.-J. Park, Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing, IEEE Photon Technol Lett. 24 (23), 2115–2118 (2012). doi:10.1109/LPT.2012.2221694
  • W. Sun, L. Ji, Z. Lin, J. Zheng, Z. Wang, L. Zhang, and T. Yan, Low-energy UV ultrafast laser controlled lift-off for high-quality flexible GaN-based device, Adv Funct Mater. 32 (8), 2111920 (2022).
  • N. Yulianto, G.T.M. Kadja, S. Bornemann, S. Gahlawat, N. Majid, K. Triyana, F.F. Abdi, H.S. Wasisto, and A. Waag, Ultrashort pulse laser lift-off processing of InGaN/GaN light-emitting diode chips, ACS Appl Electron Mater. 3 (2), 778–788 (2021). doi:10.1021/acsaelm.0c00913
  • F.G. Zeng, S. Rebscher, W. Harrison, X. Sun, and H. Feng, Cochlear implants: system design, integration, and evaluation, IEEE Rev Biomed Eng. 1, 115–142 (2008). doi:10.1109/RBME.2008.2008250
  • G. Yang, Y. Jung, C.V. Cuervo, F. Ren, S.J. Pearton, and J. Kim, GaN-based light-emitting diodes on graphene-coated flexible substrates, Opt Express. 22 (S3), A812–A817 (2014). doi:10.1364/OE.22.00A812
  • Z. Tian, Y. Li, X. Su, L. Feng, S. Wang, W. Ding, Q. Li, Y. Zhang, M. Guo, F. Yun, and S.W.R. Lee, Super flexible GaN light emitting diodes using microscale pyramid arrays through laser lift-off and dual transfer, Opt Express. 26 (2), 1817–1824 (2018). doi:10.1364/OE.26.001817
  • M. Asad, R. Wang, Y.H. Ra, P. Gavirneni, Z. Mi, and W.S. Wong, Optically invariant InGaN nanowire light-emitting diodes on flexible substrates under mechanical manipulation, npj Flexible Electronics. 3, 16 (2019). doi:10.1038/s41528-019-0059-z
  • K. Chung, H. Beak, Y. Tchoe, H. Oh, H. Yoo, M. Kim, and G.-C. Yi, Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes, APL Mater. 2 (9), 092512 (2014). doi:10.1063/1.4894780
  • C.H. Lee, Y.J. Kim, Y.J. Hong, S. Jeon, S. Bae, B.H. Hong, and G. Yi, Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films, Advanced Materials. 23 (40), 4614–4619 (2011). doi:10.1002/adma.201102407
  • J. Chen, J. Wang, K. Ji, B. Jiang, X. Cui, W. Sha, B. Wang, X. Dai, Q. Hua, L. Wan, and W. Hu, Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes, Nano Res. 15, 5492–5499 (2022). doi:10.1007/s12274-022-4170-4
  • Y. Hou, Y. Wang, and Q. Ai, A thin transferable blue light-emitting diode by electrochemical lift-off, Nano Express. 1 (2), 020033 (2020). doi:10.1088/2632-959X/abb07d
  • K. Chung, C.H. Lee, and G.C. Yi, Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices, Science 330 (6004), 655–657 (2010). doi:10.1126/science.1195403
  • J. Jeong, Q. Wang, J. Cha, D.K. Jin, D.H. Shin, S. Kwon, B.K. Kang, J.H. Jang, W.S. Yang, Y.S. Choi, J. Yoo, J.K. Kim, C.-H. Lee, S.W. Lee, A. Zakhidov, S. Hong, M.J. Kim, and Y.J. Hong, Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle, Sci Adv. 6 (23), (2020). doi:10.1126/sciadv.aaz5180
  • Y. Jia, J. Ning, J. Zhang, B. Wang, C. Yan, Y. Zeng, H. Wu, Y. Zhang, X. Shen, C. Zhang, H. Guo, D. Wang, and Y. Hao, High-quality transferred GaN-based light-emitting diodes through oxygen-assisted plasma patterning of graphene, ACS Appl Mater Interfaces. 13 (27), 32442–32449 (2021). doi:10.1021/acsami.1c04659
  • S. Sundaram, P. Vuong, A. Mballo, T. Ayari, S. Karrakchou, G. Patriarche, P.L. Voss, J.P. Salvestrini, and A. Ougazzaden, MOVPE of GaN-based mixed dimensional heterostructures on wafer-scale layered 2D hexagonal boron nitride - a key enabler of III-nitride flexible optoelectronics, APL Mater. 9 (6), 061101 (2021). doi:10.1063/5.0049306
  • L. Wang, S. Yang, F. Zhou, Y. Gao, Y. Duo, R. Chen, J. Yang, J. Yan, J. Wang, J. Li, Y. Zhang, and T. Wei, Wafer-scale transferrable GaN enabled by hexagonal Boron Nitride for flexible light-emitting diode, Small. 2306132 (2023).
  • A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al Suleiman, S. Merzsch, J. Wei, S. Li, H.H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, The nanorod approach: GaN NanoLEDs for solid state lighting, Phys Status Solidi (C). 8 (7-8), 2296–2301 (2011). doi:10.1002/pssc.201000989
  • X. Dai, A. Messanvi, H. Zhang, C. Durand, J. Eymery, C. Bougerol, F.H. Julien, and M. Tchernycheva, Flexible light-emitting diodes based on vertical nitride nanowires, Nano Lett. 15 (10), 6958–6964 (2015). doi:10.1021/acs.nanolett.5b02900
  • N. Guan, X. Dai, A. Messanvi, H. Zhang, J. Yan, E. Gautier, C. Bougerol, F.H. Julien, C. Durand, J. Eymery, and M. Tchernycheva, Flexible white light emitting diodes based on Nitride nanowires and nanophosphors, ACS Photonics. 3 (4), 597–603 (2016). doi:10.1021/acsphotonics.5b00696
  • N. Guan, X. Dai, H. Zhang, L. Mancini, A. Kapoor, C. Bougerol, F.H. Julien, N. Cavassilas, M. Foldyna, C. Durand, J. Eymery, and M. Tchernycheva. InGaN/GaN nanowire flexible light emitting diodes and photodetectors. In: 2017 19th International Conference on Transparent Optical Networks (ICTON); 2017.
  • J.H. Choi, E.H. Cho, Y.S. Lee, M. Shim, H.Y. Ahn, C. Baik, E.H. Lee, K. Kim, T. Kim, S. Kim, K. Cho, J. Yoon, M. Kim, and S. Hwang, Fully flexible gan light-emitting diodes through nanovoid-mediated transfer, Adv Opt Mater. 2 (3), 267–274 (2014). doi:10.1002/adom.201300435
  • J. Li, G. Yan, B. Luo, and Z. Liu, Study of transfer-printing technologies for micro-LED displays, SID China Spring Online Technical Meeting Proc. 51 (S1), 125–128 (2020).
  • A. Bibl, J.A. Higginson, H-F.S. Law, and H-H Hu, 2012, Method of transferring a micro device.Pat. US8333860B1.
  • A. Bibl, J.A. Higginson, H-F.S. Law, and H-H Hu, 2014, Micro light emitting diode. Pat. US8809875B2. 
  • M. Morassi, N. Guan, V.G. Dubrovskii, Y. Berdnikov, C. Barbier, L. Mancini, L. Largeau, A.V. Babichev, V. Kumaresan, F.H. Julien, L. Travers, N. Gogneau, J.-C. Harmand, and M. Tchernycheva, Selective area growth of GaN nanowires on Graphene nanodots, Cryst Growth Des. 20 (2), 552–559 (2020). doi:10.1021/acs.cgd.9b00556
  • W. Kong, H. Li, K. Qiao, Y. Kim, K. Lee, Y. Nie, D. Lee, T. Osadchy, R.J. Molnar, D.K. Gaskill, R.L. Myers-Ward, K.M. Daniels, Y. Zhang, S. Sundram, Y. Yu, S.-h. Bae, S. Rajan, Y. Shao-Horn, K. Cho, A. Ougazzaden, J.C. Grossman, and J. Kim, Polarity governs atomic interaction through two-dimensional materials, Nat Mater. 17 (11), 999–1004 (2018). doi:10.1038/s41563-018-0176-4
  • J. Bosch, L. Valera, C. Mastropasqua, A. Michon, M. Nemoz, M. Portail, J. Zúñiga-Pérez, M. Tchernycheva, B. Alloing, and C. Durand, InGaN/GaN QWs on tetrahedral structures grown on graphene/SiC, Microelectron Eng. 275, 111995 (2023). doi:10.1016/j.mee.2023.111995
  • T. Tian, P. Rice, E.J.G. Santos, and C.J. Shih, Multiscale analysis for field-effect penetration through two-dimensional materials, Nano Lett. 16 (8), 5044–5052 (2016). doi:10.1021/acs.nanolett.6b01876
  • Y. Kim, S.S. Cruz, K. Lee, B.O. Alawode, C. Choi, Y. Song, J.M. Johnson, C. Heidelberger, W. Kong, S. Choi, K. Qiao, I. Almansouri, E.A. Fitzgerald, J. Kong, A.M. Kolpak, J. Hwang, and J. Kim, Remote epitaxy through graphene enables two-dimensional material-based layer transfer, Nature. 544, 340–343 (2017). doi:10.1038/nature22053
  • T. Journot, H. Okuno, N. Mollard, A. Michon, R. Dagher, P. Gergaud, J. Dijon, A.V. Kolobov, and B. Hyot, Remote epitaxy using graphene enables growth of stress-free GaN, Nanotechnology. 30 (50), 505603 (2019). doi:10.1088/1361-6528/ab4501
  • M. Tchernycheva, P. Lavenus, H. Zhang, A.V. Babichev, G. Jacopin, M. Shahmohammadi, F.H. Julien, R. Ciechonski, G. Vescovi, and O. Kryliouk, InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based P-contact, Nano Lett. 14 (5), 2456–2465 (2014). doi:10.1021/nl5001295
  • B.J. May, A.T.M.G. Sarwar, and R.C. Myers, Nanowire LEDs grown directly on flexible metal foil, Appl Phys Lett. 108 (14), 141103 (2016). doi:10.1063/1.4945419
  • G. Calabrese, P. Corfdir, G. Gao, C. Pfüller, A. Trampert, O. Brandt, L. Geelhaar, and S. Fernández-Garrido, Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil, Appl Phys Lett. 108 (20), 202101 (2016). doi:10.1063/1.4950707
  • H. Kim, J. Ohta, K. Ueno, A. Kobayashi, M. Morita, Y. Tokumoto, and H. Fujioka, Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils, Sci Rep. 7, 2112 (2017).
  • C. Ramesh, P. Tyagi, S. Gautam, S. Ojha, G. Gupta, M.S. Kumar, and S.S. Kushvaha, Controlled growth of GaN nanorods directly on flexible Mo metal foil by laser molecular beam epitaxy, Mater Sci Semicond Process. 111, 104988 (2020).
  • V. Matias, C. Yung, C. Sheehan, A. Elshafiey, D. Feezell, and B. Gunning. Growth of InGaN LEDs directly on metal foils: making LEDs in sheets by the kilometer. International Conference on Nitride Semiconductors. Published online 2019:G01.02.
  • F.M. Kochetkov, V. Neplokh, V.A. Mastalieva, S. Mukhangali, A.A. Vorob’ev, A.V. Uvarov, F.E. Komissarenko, D.M. Mitin, A. Kapoor, J. Eymery, N. Amador-Mendez, C. Durand, D. Krasnikov, A.G. Nasibulin, M. Tchernycheva, and I.S. Mukhin, Stretchable transparent light-emitting diodes based on InGaN/GaN quantum well microwires and carbon nanotube films, Nanomaterials. 11 (6), 1503 (2021). doi:10.3390/nano11061503
  • K. Kishino, K. Nagashima, and K. Yamano, Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors, Appl. Phys. Express. 6 (1), 012101 (2013). doi:10.7567/APEX.6.012101
  • Y.H. Ra, R. Wang, S.Y. Woo, M. Djavid, S.M. Sadaf, J. Lee, G.A. Botton, and Z. Mi, Full-color single nanowire pixels for projection displays, Nano Lett. 16 (7), 4608–4615 (2016). doi:10.1021/acs.nanolett.6b01929
  • V. Vignesh, Y. Wu, S.U. Kim, J.-K. Oh, C. Bagavath, D.-Y. Um, Z. Mi, and Y.-H. Ra, III-nitride nanowires for emissive display technology, J. Inf. Displ. (2023).
  • A. Pandey, M. Reddeppa, and Z. Mi, Recent progress on micro-LEDs, Light: Adv Manuf. 4, 31 (2023). doi:10.37188/lam.2023.031
  • A. Kapoor, N. Guan, M. Vallo, A. Messanvi, L. Mancini, E. Gautier, C. Bougerol, B. Gayral, F.H. Julien, F. Vurpillot, L. Rigutti, M. Tchernycheva, J. Eymery, and C. Durand, Green electroluminescence from radial m-Plane InGaN quantum wells grown on GaN wire sidewalls by metal-organic vapor phase Epitaxy, ACS Photonics. 5 (11), 4330–4337 (2018). doi:10.1021/acsphotonics.8b00520
  • V. Neplokh, A. Messanvi, H. Zhang, F.H. Julien, A. Babichev, J. Eymery, C. Durand, and M. Tchernycheva, Substrate-free InGaN/GaN nanowire light-emitting diodes, Nanoscale Res Lett. 10, 447 (2015). doi:10.1186/s11671-015-1143-5
  • N. Guan, N. Amador-Mendez, J. Wang, S. Das, A. Kapoor, F.H. Julien, N. Gogneau, M. Foldyna, S. Som, J. Eymery, C. Durand, and M. Tchernycheva, Colour optimization of phosphor-converted flexible nitride nanowire white light emitting diodes, JPhys Photonics. 1 (3), 035003 (2019).
  • A. Kapoor, V. Grenier, E. Robin, C. Bougerol, G. Jacopin, B. Gayral, M. Tchernycheva, J. Eymery, and C. Durand, Dual-color emission from Monolithic m -plane core–shell InGaN/GaN quantum wells, Adv Photonics Res. 2 (6) (2021). doi:10.1002/adpr.202000148
  • N. Guan, N. Amador-Mendez, A. Kunti, A. Babichev, S. Das, A. Kapoor, N. Gogneau, J. Eymery, F.H. Julien, C. Durand, and M. Tchernycheva, Heat dissipation in flexible nitride nanowire light-emitting diodes, Nanomaterials. 10 (11), 2271 (2020). doi:10.3390/nano10112271
  • P. Tchoulfian, Revolutionising microLED displays with nanowires. Compound Semiconductors., 22–27 (2023);29(VII).