203
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An analysis of fractional piecewise derivative models of dengue transmission using deep neural network

, , , &

References

  • World Health Organization. Dengue control: epidemiology. Diunduh pada Vol. 25. 2018.
  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. doi: 10.1038/nature12060
  • Shekhar C. Deadly dengue: new vaccines promise to tackle this escalating global menace. Chem Biol. 2007;14(8):871–872. doi: 10.1016/j.chembiol.2007.08.004
  • Brady OJ, Gething PW, Bhatt S, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. 2012. p. e1760.
  • Derouich M, Abdesslam B. Dengue fever: mathematical modelling and computer simulation. Appl Math Comput. 2006;177(2):528–544.
  • Esteva L, Cristobal V. Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math Biosci. 2000;167(1):51–64. doi: 10.1016/S0025-5564(00)00024-9
  • Qureshi S, Atangana A. Mathematical analysis of dengue fever outbreak by novel fractional operators with field data. Phys A Stat Mech Appl. 2019;526:121127. doi: 10.1016/j.physa.2019.121127
  • Derouich M, Outayeb A, Twizell EH. A model of dengue fever. Biomed J Line Central. 2003;2(1):1–10.
  • Esteva L, Vargas C. Analysis of a dengue disease transmission model. Math Biosci. 1998;150(2):131–151. doi: 10.1016/S0025-5564(98)10003-2
  • Esteva L, Vargas C. A model for dengue disease with variable human population. J Math Biol. 1999;38(3):220–240. doi: 10.1007/s002850050147
  • Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000;42(4):599–653. doi: 10.1137/S0036144500371907
  • Newton EA, Reiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg. 1992;47(6):709–720. doi: 10.4269/ajtmh.1992.47.709
  • Esteva L, Vargas C. Analysis of a dengue disease transmission model. Math Biosci. 1998;150(2):131–151. doi: 10.1016/S0025-5564(98)10003-2
  • Feng Z, Velasco-Hernández JX. Competitive exclusion in a vector-host model for the dengue fever. J Math Biol. 1997;35(5):523–544. doi: 10.1007/s002850050064
  • Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel. Therm Sci. 2016;20(2):763–769. doi: 10.2298/TSCI160111018A
  • Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calculus Appl Anal. 2002;5:367–386.
  • Li B, Zhang T, Zhang C. Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative. FRACTALS (fractals). 2023;31(05):1–13.
  • Zhu X, Xia P, He Q, et al. Ensemble classifier design based on perturbation binary salp swarm algorithm for classification. CMES-Comput Model Eng Sci. 2023;135(1):653–671.
  • Mahmood T, Al-Duais FS, Sun M. Dynamics of Middle East respiratory syndrome coronavirus (MERS-CoV) involving fractional derivative with Mittag-Leffler kernel. Phys A: Stat Mech Appl. 2022;606:128144. doi: 10.1016/j.physa.2022.128144
  • Zhang L, Ur Rahman M, Haidong Q, et al. Fractal-fractional anthroponotic cutaneous leishmania model study in sense of Caputo derivative. Alex Eng J. 2022;61(6):4423–4433. doi: 10.1016/j.aej.2021.10.001
  • Zhang L, Ur Rahman M, Ahmad S, et al. Dynamics of fractional order delay model of coronavirus disease. Aims Math. 2022;7(3):4211–4232. doi: 10.3934/math.2022234
  • Mahmood T, Ur Rahman M, Arfan M, et al. Mathematical study of algae as a bio-fertilizer using fractal–fractional dynamic model. Math Comput Simul. 2023;203:207–222. doi: 10.1016/j.matcom.2022.06.028
  • Xu C, Liao M, Li P, et al. Chaos control for a fractional-order jerk system via time delay feedback controller and mixed controller. Fractal Fract. 2021;5(4):257. doi: 10.3390/fractalfract5040257
  • Partohaghighi M, Yusuf A, Alshomrani AS, et al. Fractional hyper-chaotic system with complex dynamics and high sensitivity: applications in engineering. Int J Mod Phys B. 2024;38(01):2450012. doi: 10.1142/S0217979224500127
  • Xu C, Pang Y, Liu Z, et al. Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India. Phys Scr. 2024;99(2):025218. doi: 10.1088/1402-4896/ad186c
  • Zhu X, Xia P, He Q, et al. Coke price prediction approach based on dense GRU and opposition-based learning salp swarm algorithm. Int J Bio-Inspired Comput. 2023;21(2):106–121. doi: 10.1504/IJBIC.2023.130549
  • Li B, Eskandari Z, Avazzadeh Z. Dynamical behaviors of an SIR epidemic model with discrete time. Fractal Fract. 2022;6(11):659. doi: 10.3390/fractalfract6110659
  • Ur Rahman M, Althobaiti A, Bilal Riaz M, et al. A theoretical and numerical study on fractional order biological models with Caputo Fabrizio derivative. Fractal Fract. 2022;6(8):446. doi: 10.3390/fractalfract6080446
  • Pooseh S, Sofia Rodrigues H, Torres DFM. Fractional derivatives in dengue epidemics. In: AIP Conference Proceedings. Vol. 1389. no. 1. American Institute of Physics, 2011.
  • Xu C, Liu Z, Li P, et al. Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Process Lett. 2023;55(5):6125–6151. doi: 10.1007/s11063-022-11130-y
  • Al-Sulami H, El-Shahed M, Nieto JJ, et al. On fractional order dengue epidemic model. Math Prob Eng. 2014;2014:1–6. doi: 10.1155/2014/456537
  • Defterli O. Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators. Chaos Solitons Fract. 2021;144:110654. doi: 10.1016/j.chaos.2021.110654
  • Atangana A, Araz S. New concept in calculus: piecewise differential and integral operators. Chaos Solitons Fract. 2021;145:110638. doi: 10.1016/j.chaos.2020.110638
  • Atangana A, Araz S. Modeling third waves of covid-19 spread with piecewise differential and integral operators: Turkey, Spain and Czechia. Results Phys. 2021;29:104694. doi: 10.1016/j.rinp.2021.104694
  • Khan WA, Zarin R, Zeb A, et al. Navigating food allergy dynamics via a novel fractional mathematical model for antacid-induced allergies. J Math Tech Model. 2024;1(1):25–51.
  • Shah K, Abdeljawad T, Ali A. Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative. Chaos Solitons Fract. 2022;161:112356. doi: 10.1016/j.chaos.2022.112356
  • Chinnamuniyandi M, Chandran S, Changjin X. Fractional order uncertain BAM neural networks with mixed time delays: an existence and quasi-uniform stability analysis. J Intell & Fuzzy Syst Preprint. 2024;46(2):4291–4313.
  • Cui Q, Xu C, Ou W, et al. Bifurcation behavior and hybrid controller design of a 2D Lotka–Volterra commensal symbiosis system accompanying delay. Mathematics. 2023;11(23):4808. doi: 10.3390/math11234808
  • Qu H, Saifullah S, Khan J, et al. Dynamics of leptospirosis disease in context of piecewise classical-global and classical-fractional operators. Fractals. 2022;30(08):2240216. doi: 10.1142/S0218348X22402162
  • Kilicman A. A fractional order SIR epidemic model for dengue transmission. Chaos Solitons Fract. 2018;114:55–62. doi: 10.1016/j.chaos.2018.06.031