299
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy

&
Pages 323-333 | Received 23 May 2022, Accepted 11 Jan 2023, Published online: 19 Jan 2023

References

  • Forde PM, Chaft JE, Smith KN, et al. Blockade in resectable lung cancer. N Engl J Med. 2018;378(21):1976–1986.
  • Levi ST, Copeland AR, Nah S, et al. Neoantigen identification and response to adoptive cell transfer in anti PD-1 naïve and experienced patients with metastatic melanoma. Clin Cancer Res. 2022;28(14):3042–3052.
  • Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–226.
  • Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–221.
  • Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572–576.
  • Kreiter S, Vormehr M, van de Roemer N, et al. MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–696.
  • Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–327.
  • Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–581.
  • Baljon JJ, Wilson JT. Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr Opin Immunol. 2022;77:102215.
  • Richters MM, Xia H, Campbell KM, et al. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019;11(1):56.
  • Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–489.
  • Caballero D, Abreu CM, Lima AC, et al. Precision biomaterials in cancer theranostics and modelling. Biomaterials. 2022;280:121299.
  • Liu J, Chen Q, Feng L, et al. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today. 2018;21:55–73.
  • Wang X, Ihara S, Li X, et al. Strategies for immune-targeted delivery system toward cancer immunotherapy. ACS Nano. 2019;13(7):7705–7715.
  • Jyoti K, Jain S, Katare OP, et al. Non-small cell lung cancer tumour antigen, MUC-1 peptide-loaded non-aggregated poly (lactide-co-glycolide) nanoparticles augmented cellular uptake in mouse professional antigen-presenting cells: optimisation and characterisation. J Microencapsul. 2020;37(1):14–28.
  • Jyoti K, Katare OP, Kamboj A, et al. Protamine sulphate coated poly (lactide-co-glycolide) nanoparticles of MUC-1 peptide improved cellular uptake and cytokine release in mouse antigen presenting cells. J Microencapsul. 2020;37(8):566–576.
  • Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater. 2021;33(39):e2100176.
  • Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater. 2021;6(9):766–783.
  • He J, Zhang W, Zhou X, et al. Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioact Mater. 2023;19:115–126.
  • Coulie PG, Van den Eynde BJ, van der Bruggen P, et al. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–146.
  • Zhao X, Pan X, Wang Y, et al. Targeting neoantigens for cancer immunotherapy. Biomark Res. 2021;9(1):61.
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.
  • Alexandrov LB, Nik-Zainal S, Wedge DC. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–421.
  • Smith CC, Selitsky SR, Chai S, et al. Alternative tumour-specific antigens. Nat Rev Cancer. 2019;19(8):465–478.
  • Richard G, Princiotta MF, Bridon D, et al. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines. 2022;21(2):173–184.
  • De Plaen E, Lurquin C, Van Pel A, et al. (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc Natl Acad Sci U S A. 1988;85(7):2274–2278.
  • Holtsträter C, Schrörs B, Bukur T, et al. Bioinformatics for cancer immunotherapy. Methods Mol Biol. 2020;2120:1–9.
  • Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–404.
  • DuPage M, Mazumdar C, Schmidt LM, et al. Expression of tumour-specific antigens underlies cancer immunoediting. Nature. 2012;482(7385):405–409.
  • Mohsen MO, Speiser DE, Michaux J, et al. Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. J Immunother Cancer. 2022;10(1):1.
  • Cai Z, Su X, Qiu L, et al. Personalized neoantigen vaccine prevents postoperative recurrence in hepatocellular carcinoma patients with vascular invasion. Mol Cancer. 2021;20(1):164.
  • Cui C, Wang J, Fagerberg E, et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell. 2021;184(25):6101–6118.e6113.
  • Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–239.
  • Morisaki T, Hikichi T, Onishi H, et al. Intranodal administration of neoantigen peptide-loaded dendritic cell vaccine elicits epitope-specific T cell responses and clinical effects in a patient with chemorefractory ovarian cancer with malignant ascites. Immunol Invest. 2021;50(5):562–579.
  • Sarivalasis A, Boudousquié C, Balint K, et al. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med. 2019;17(1):391.
  • Bassani-Sternberg M, Digklia A, Huber F, et al. A phase ib study of the combination of personalized autologous dendritic cell vaccine, aspirin, and standard of care adjuvant chemotherapy followed by nivolumab for resected pancreatic adenocarcinoma-a proof of antigen discovery feasibility in three patients. Front Immunol. 2019;10:1832.
  • Welters MJ, Kenter GG, Piersma SJ, et al. Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, Melief CJ, van der Burg SH. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 2008;14(1):178–187.
  • Koido S, Kashiwaba M, Chen D, et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000;165(10):5713–5719.
  • Hegde S, Krisnawan VE, Herzog BH, et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell. 2020;37(3):289–307.e289.
  • Firdessa-Fite R, Creusot RJ. Nanoparticles versus dendritic cells as vehicles to deliver mRNA encoding multiple epitopes for immunotherapy. Mol Ther Methods Clin Dev. 2020;16:50–62.
  • Amara S, Tiriveedhi V. The five immune forces impacting DNA-based cancer immunotherapeutic strategy. Int J Mol Sci. 2017;18(3):3.
  • Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines (Basel). 2015;3(3):662–685.
  • Schetters STT, Li RJE, Kruijssen LJW, et al. Adaptable antigen matrix platforms for peptide vaccination strategies and T cell-mediated anti-tumor immunity. Biomaterials. 2020;262:120342.
  • Maeda M, Kojima T, Song Y, et al. DNA-based biomaterials for immunoengineering. Adv Healthc Mater. 2019;8(4):e1801243.
  • Zhao J, Ye H, Lu Q, et al. Inhibition of post-surgery tumour recurrence via a sprayable chemo-immunotherapy gel releasing PD-L1 antibody and platelet-derived small EVs. J Nanobiotechnology. 2022;20(1):62.
  • Chen Q, Wang C, Zhang X, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14(1):89–97.
  • Makowski EK, Wu L, Gupta P, et al. Discovery-stage identification of drug-like antibodies using emerging experimental and computational methods. MAbs. 2021;13(1):1895540.
  • Zhou L, Hou B, Wang D, et al. Engineering polymeric prodrug nanoplatform for vaccination immunotherapy of cancer. Nano Lett. 2020;20(6):4393–4402.
  • Zhu G, Mei L, Vishwasrao HD, et al. DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat Commun. 2017;8(1):1482.
  • Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18(1):128.
  • Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648–654.
  • Kuai R, Ochyl LJ, Bahjat KS, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2017;16(4):489–496.
  • Min Y, Roche KC, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 2017;12(9):877–882.
  • Li AW, Sobral MC, Badrinath S, et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater. 2018;17(6):528–534.
  • Xu C, Hong H, Lee Y, et al. Efficient lymph node-targeted delivery of personalized cancer vaccines with reactive oxygen species-inducing reduced graphene oxide nanosheets. ACS Nano. 2020;14(10):13268–13278.
  • Shae D, Baljon JJ, Wehbe M, et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines. ACS Nano. 2020;14(8):9904–9916.
  • Park KS, Nam J, Son S, et al. Personalized combination nano-immunotherapy for robust induction and tumor infiltration of CD8(+) T cells. Biomaterials. 2021;274:120844.
  • Xiao P, Wang J, Fang L, et al. Selective delivery of neoantigens potentiating adoptive dendritic cell transfer for personalized immunization. Adv Funct Mater. 2021;31(36):36.
  • Shao Y, Sun ZY, Wang Y, et al. Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl Mater Interfaces. 2018;10(11):9310–9314.
  • Pentlavalli S, Coulter S, Laverty G. Peptide nanomaterials for drug delivery applications. Curr Protein Pept Sci. 2020;21(4):401–412.
  • Liu Y, Sun C, Li W, et al. and characterization of syringic acid-loaded TPGS liposome with enhanced oral bioavailability and In vivo antioxidant efficiency. AAPS PharmSciTech. 2019;20(3):98.
  • Liang J, Zhao X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol Med. 2021;18(2):352–371.
  • Zhang R, Yuan F, Shu Y, et al. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models. Cancer Immunol Immunother. 2020;69(1):135–145.
  • Wei L, Zhao Y, Hu X, et al. Neoepitope for enhanced personalized cancer vaccine. ACS Cent Sci. 2020;6(3):404–412.
  • Toy R, Keenum MC, Pradhan P, et al. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination. J Control Release. 2021;330:866–877.
  • Meng J, Zhang P, Chen Q, et al. Co-delivery of antigen and adjuvant for synergistic cancer immunotherapy. Adv Mater. 2022;34(21):e2202168.
  • Ni Q, Zhang F, Liu Y, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv. 2020;6(12):eaaw6071–eaaw6071.
  • Zhang D, Lin Z, Wu M, et al. Cytosolic delivery of thiolated neoantigen nano-vaccine combined with immune checkpoint blockade to boost anti-cancer T cell immunity. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2021;8(6):2003504.
  • Xu C, Nam J, Hong H, et al. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS nano. 2019;13(10):12148–12161.
  • Zhang L, Alizadeh D, Van Handel M, et al. inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia. 2009;57(13):1458–1467.
  • Kitamura H, Ohno Y, Toyoshima Y, et al. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108(10):1947–1952.
  • Gong N, Zhang Y, Teng X, et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2020;15(12):1053–1064.
  • Mulens-Arias V, Rojas JM, Pérez-Yagüe S, et al. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials. 2015;52:494–506.
  • Zhu G, Zhang F, Ni Q, et al. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano. 2017;11(3):2387–2392.
  • Scheetz L, Park KS, Li Q, et al. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng. 2019;3(10):768–782.
  • Chen F, Wang Y, Gao J, et al. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021;270:120709.
  • Das K, Belnoue E, Rossi M, et al. A modular self-adjuvanting cancer vaccine combined with an oncolytic vaccine induces potent antitumor immunity. Nat Commun. 2021;12(1):5195.
  • Skwarczynski M, Zhao G, Boer JC, et al. Toth I. Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci Adv. 2020;6(5):eaax2285.
  • Xu Z, Zeng S, Gong Z, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer. 2020;19(1):160.
  • Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.
  • Holay M, Guo Z, Pihl J, et al. Bacteria-Inspired Nanomedicine. ACS Appl Bio Mater. 2021;4(5):3830–3848.
  • Cheng K, Zhao R, Li Y, et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat Commun. 2021;12(1):2041.
  • Patel RB, Ye M, Carlson PM, et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv Mater. 2019;31(43):e1902626.
  • Chen L, Qin H, Zhao R, et al. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci Transl Med. 2021;13(601):601.
  • Zhao Q, Wang Y, Zhao B, et al. Combined with TIM-3 blockade effectively restrains orthotopic hepatocellular carcinoma progression. Nano Lett. 2022;22(5):2048–2058.
  • Phuengkham H, Song C, Lim YT, et al. Scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv Mater. 2019;31(42):e1903242.
  • Ali OA, Huebsch N, Cao L, et al. Infection-mimicking materials to program dendritic cells in situ. Nat Mater. 2009;8(2):151–158.
  • Su Q, Song H, Huang P, et al. Supramolecular co-assembly of self-adjuvanting nanofibrous peptide hydrogel enhances cancer vaccination by activating MyD88-dependent NF-κB signaling pathway without inflammation. Bioact Mater. 2021;6(11):3924–3934.
  • Thomas SN, Vokali E, Lund AW, et al. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials. 2014;35(2):814–824.
  • Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159–1164.
  • Han X, Shen S, Fan Q, et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci Adv. 2019;5(10):eaaw6870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.