400
Views
0
CrossRef citations to date
0
Altmetric
Review

Small interfering RNA-based nanotherapeutics for treating skin-related diseases

, , , & ORCID Icon
Pages 757-772 | Received 31 Jan 2023, Accepted 20 Apr 2023, Published online: 25 Apr 2023

References

  • Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A. 1978;75:285‒288.
  • Yamada Y. Nucleic acid drugs-Current status, issues, and expectations for exosomes. Cancers (Basel). 2021;13:5002.
  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19:673‒694. DOI:10.1038/s41573-020-0075-7.
  • Mir C, Garcia-Mayea Y, LLeonart ME. Targeting the “undruggable”: rNA-binding proteins in the spotlight in cancer therapy. Semin Cancer Biol. 2022;86:69‒83.
  • Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179:1033–1055.
  • Kim YK. RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med. 2022;54:455–465. DOI:10.1038/s12276-022-00757-5.
  • Flohr C, Hay R. Putting the burden of skin diseases on the global map. Br J Dermatol. 2021;184:189–190.
  • Bellefroid C, Lechanteur A, Evrard B, et al. Lipid gene nanocarriers for the treatment of skin diseases: current state-of-the-art. Eur J Pharm Biopharm. 2019;137:95–111.
  • Ain QU, Campos EVR, Huynh A, et al. Gene delivery to the skin-How far have we come? Trends Biotechnol. 2021;39:474–487. DOI:10.1016/j.tibtech.2020.07.012.
  • Damase TR, Sukhovershin R, Boada C, et al. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9:628137.
  • O’Sullivan J, Muñoz-Muñoz J, Turnbull G, et al. Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Adv. 2022;12:20432.
  • Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25:2692.
  • Aljuffali IA, Lin CH, Yang SC, et al. Nanoencapsulation of topically applied tea catechins for enhancing skin absorption and therapeutic efficacy. AAPS Pharm Sci Tech. 2022;23:187.
  • Tieu T, Wei Y, Cifuentes-Rius A, et al. Overcoming barriers: clinical translation of siRNA nanomedicines. Adv Ther. 2021;4:2100108. DOI:10.1002/adtp.202100108.
  • Kim B, Park JH, Sailor MJ. Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv Mater. 2019;31:e1903637.
  • Wu Z, Li T. Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: challenges and future perspectives. Pharm Res. 2021;38:473–478.
  • Sousa de Almeida M, Susnik E, Drasler B, et al. Understanding nanoparticle endocytosis to improve targeting in nanomedicine. Chem Soc Rev. 2021;50:5397–5434. DOI:10.1039/D0CS01127D.
  • Milane L, Amiji M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv Transl Res. 2021;11:1309–1315.
  • Steffens RC, Wagner E. Directing the way—Receptor and chemical targeting strategies for nucleic acid delivery. Pharm Res. 2022;40(1):47–76.
  • Benson HAE, Grice JE, Mohammed Y, et al. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr Drug Deliv. 2019;16:444–460.
  • Gupta R, Rai B. In-silico design of nanoparticles for transdermal drug delivery application. Nanoscale. 2018;10:4940–4951.
  • Larese Filon F, Mauro M, Adami G, et al. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol. 2015;72:310–322.
  • Souto EB, Macedo AS, Dias-Ferreira J, et al. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int J Mol Sci. 2021;22:9743.
  • Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28:146–157.
  • Valcourt DM, Harris J, Riley RS, et al. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 2018;11:4999–5016. DOI:10.1007/s12274-018-2083-z.
  • Ranasinghe P, Addison ML, Dear JW, et al. Small interfering RNA: discovery, pharmacology and clinical development-An introductory review. Br J Pharmacol. 2022. DOI:10.1111/bph.15972
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811.
  • Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Progress in natural compounds/siRNA co-delivery employing nanovehicles for cancer therapy. ACS Comb Sci. 2020;22:669–700.
  • Aljuffali IA, Lin YK, Fang JY. Noninvasive approach for enhancing small interfering RNA delivery percutaneously. Expert Opin Drug Deliv. 2016;13:265–280.
  • Alshaer W, Zureigat H, Al Karaki A, et al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;905:174178.
  • Aimo A, Castiglione V, Rapezzi C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol. 2022;19:655–667.
  • Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs. 2022;36:549–571.
  • Kalita T, Dezfouli SA, Pandey LM, et al. siRNA functionalized lipid nanoparticles (LNPs) in management of diseases. Pharmaceutics. 2022;14:2520.
  • Subhan MA, Torchilin VP. siRNA based drug design, quality, delivery and clinical translation. Nanomed Nanotechnol Biol Med. 2020;29:102239.
  • Hald Albertsen C, Kulkarni JA, Witzigmann D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416.
  • Griffiths G, Gruenberg J, Marsh M, et al. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev. 2022;188:114403.
  • Mendes BB, Conniot J, Avital A, et al. Nanodelivery of nucleic acids. Nat Rev Methods Primers. 2022;2:24.
  • Sharma AR, Lee YH, Bat-Ulzii A, et al. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnol. 2022;20:501.
  • Schade A, Delyagina E, Scharfenberg D, et al. Innovative strategy for microRNA delivery in human mesenchymal stem cells via magnetic nanoparticles. Int J Mol Sci. 2013;14:10710–10726.
  • Yin PT, Shah BP, Lee KB. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small. 2014;10:4106–4112.
  • Eloy JO, Petrilli R, Lopez RFV, et al. Stimuli-responsive nanoparticles for siRNA delivery. Curr Pharm Des. 2015;21:4131–4144.
  • Marques TS, Śmiałek MA, Schürmann R, et al. Decomposition of halogenated nucleobases by surface plasmon resonance excitation of gold nanoparticles. Eur Phys J D. 2020;74:222.
  • Gomes PJ, Ferraria AM, Botelho Do Rego AM, et al. Energy thresholds of DNA damage induced by UV radiation: an XPS study. J Phys Chem B. 2015;119:5404–5411.
  • Graczyk A, Pawlowska R, Chworos A. Gold nanoparticles as carriers for functional RNA nanostrucrures. Bioconjug Chem. 2021;32:1667–1674.
  • Luther DC, Huang R, Jeon T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev. 2020;156:188–213. DOI:10.1016/j.addr.2020.06.020.
  • Paiva-Santos AC, Herdade AM, Guerra C, et al. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm. 2021;597:120311.
  • Alalaiwe A, Lin YC, Lin CF, et al. TiO2-embedded mesoporous silica with lower porosity is beneficial to adsorb the pollutants and retard UV filter absorption: a possible application for outdoor skin protection. Eur J Pharm Sci. 2023;180:106344.
  • Vallet-Regí M, Schüth F, Lozano D, et al. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev. 2022;51:5365–5451.
  • Cha W, Fan R, Miao Y, et al. Mesoporous silica nanoparticles as carriers for intracellular delivery of nucleic acids and subsequent therapeutic applications. Molecules. 2017;22:782.
  • Tivnan A, Orr WS, Gubala V, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS ONE. 2012;7:e38129.
  • Bertucci A, Prasetyanto EA, Septiadi D, et al. Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small. 2015;11:5687–5695.
  • Kolimi P, Narala S, Youssef AAA, et al. A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics. 2023;7:70–89.
  • Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Devel Ther. 2020;14:3271–3289. DOI:10.2147/DDDT.S264648.
  • Lin YK, Yang SC, Hsu CY, et al. The antibiofilm nanosystems for improved infection inhibition of microbes in skin. Molecules. 2021;26:6392.
  • Zhang Z, Tsai PC, Ramezanli T, et al. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:205–218.
  • Mohammadi Z, Eini M, Rastegari A, et al. Chitosan as a machine for biomolecule delivery: a review. Carbohydr Polym. 2021;256:117414.
  • Fan Y, Liu Y, Wu Y, et al. Natural polysaccharides based self-assembled nanoparticles for biomedical applications-A review. Int j biol macromol. 2021;192:1240–1255.
  • Wang S, Zhang J, Wang Y, et al. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine. 2016;12:411–420.
  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.
  • Dave K, Krishna Venuganti VV. Dendritic polymers for dermal drug delivery. Ther Deliv. 2017;8:1077–1096.
  • Choudhury H, Pandey M, Mohgan R, et al. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. Biomater Adv. 2022;141:213118.
  • Butt AM, Abdullah N, Rani NNIM, et al. Endosomal escape of bioactives deployed via nanocarriers: insights into the design of polymeric micelles. Pharm Res. 2022;39:1047–1064.
  • Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev. 2021;174:53–86.
  • Hsu CY, Yang SC, Sung CT, et al. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomed. 2017;12:8227–8238.
  • Akram MW, Jamshaid H, Rehman FU, et al. Transfersomes: a revolutionary nanosystem for efficient transdermal drug delivery. AAPS Pharm Sci Tech. 2021;23:7.
  • Paiva-Santos AC, Silva AL, Guerra C, et al. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res. 2021;38:947–970.
  • Geusens B, Van Gele M, Braat S, et al. Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin. Adv Funct Mater. 2010;20:4077–4090.
  • Ewert KK, Scodeller P, Simón-Gracia L, et al. Cationic liposomes as vectors for nucleic acid and hydrophobic drug therapeutics. Pharmaceutics. 2021;13:1365.
  • Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989;86:6077–6081.
  • Santos AC, Morais F, Simões A, et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019;16:313–330.
  • Rai VK, Mishra N, Yadav KS, et al. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–225.
  • Souto EB, Fangueiro JF, Fernandes AR, et al. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022;8:e08938.
  • Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release. 2019;313:80–95.
  • Madheswaran T, Kandasamy M, Bose RJ, et al. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today. 2019;24:1405–1412.
  • Silvestrini AVP, Caron AL, Viegas J, et al. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opin Drug Deliv. 2020;17:1781–1805.
  • He S, Fan W, Wu N, et al. Lipid-based liquid crystalline nanoparticles facilitate cytosolic delivery of siRNA via structural transformation. Nano Lett. 2018;18:2411–2419.
  • Lefèvre-Utile A, Braun C, Haftek M, et al. Five functional aspects of the epidermal barrier. Int J Mol Sci. 2021;22:11676.
  • Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomed. 2016;11:1987–2007.
  • Fang CL, Aljuffali IA, Li YC, et al. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5:991–1006.
  • Patzelt A, Lademann J. Recent advances in follicular drug delivery of nanoparticles. Expert Opin Drug Deliv. 2020;17:49–60. DOI:10.1080/17425247.2020.1700226.
  • Zorn-Kruppa M, Vidal-Y-Sy S, Houdek P, et al. Tight junction barriers in human hair follicles−Role of claudin-1. Sci Rep. 2018;8:12800.
  • Filon FL, Crosera M, Adami G, et al. Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology. 2011;5:493–501.
  • Cui M, Wiraja C, Chew SWT, et al. Nanodelivery systems for topical management of skin disorders. Mol Pharm. 2021;18:491–505. DOI:10.1021/acs.molpharmaceut.0c00154.
  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A. 2012;109:11975–11980.
  • Williams SC. Spherical nucleic acids: a whole new ball game. Proc Natl Acad Sci U S A. 2013;110:13231–13233.
  • Jacobson GB, Gonzalez-Gonzalez E, Spitler R, et al. Biodegradable nanoparticles with sustained release of functional siRNA in skin. J Pharm Sci. 2010;99:4261–4266.
  • de Carvalho Vicentini FT, Depieri LV, Polizello AC, et al. Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur J Pharm Biopharm. 2013;83:16–24.
  • Zakrewsky M, Mitragotri S. Therapeutic RNAi robed with ionic liquid moieties as a simple, scalable prodrug platform for treating skin disease. J Control Release. 2016;242:80–88.
  • Griffiths CEM, Armstrong AW, Gudjonsson JE, et al. Psoriasis. Lancet. 2021;397:1301‒1315.
  • Huang TH, Lin CF, Alalaiwe A, et al. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int J Mol Sci. 2019;20:2558.
  • Nemati H, Ghahramani MH, Faridi-Majidi R, et al. Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis. J Control Release. 2017;268:259‒268.
  • Lee WR, Chou WL, Lin ZC, et al. Laser-assisted nanocarrier delivery to achieve cutaneous siRNA targeting for attenuating psoriasiform dermatitis. J Control Release. 2022;347:590–606.
  • Pandi P, Jain A, Kommineni N, et al. Dendrimer as a new potential carrier for topical delivery of siRNA: a comparative study of dendriplex vs. lipoplex for delivery of TNF-α siRNA. Int J Pharm. 2018;550:240‒250.
  • Bracke S, Carretero M, Guerrero-Aspizua S, et al. Targeting silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: development of siRNA SECosomes-based novel therapies. Exp Dermatol. 2014;23:199‒201.
  • Marepally S, Boakye CH, Patel AR, et al. Topical administration of dual siRnas using fusogenic lipid nanoparticles for treating psoriatic-like plaques. Nanomedicine. 2014;9:2157‒2174.
  • Viegas JSR, Praça FG, Caron AL, et al. Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv Transl Res. 2020;10:646‒660.
  • Desai PR, Marepally S, Patel AR, et al. Topical delivery of anti-TNF-α siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170:51‒63.
  • Petrilli R, Eloy JO, Praça FS, et al. Liquid crystalline nanodispersions functionalized with cell-penetrating peptides for topical delivery of short-interfering RNAs: a proposal for silencing a pro-inflammatory cytokine in cutaneous diseases. J Biomed Nanotechnol. 2016;12:1063‒1075.
  • Takahashi T, Yamasaki K. Psoriasis and antimicrobial peptides. Int J Mol Sci. 2020;21:6791.
  • Kim CS, Kawada T, Kim BS, et al. Capsaicin exhibits anti-inflammatory property by inhibiting IκB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal. 2003;15:299‒306.
  • Hu W, Fang L, Ni R, et al. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer. 2022;22:836.
  • McGettigan S. Dabrafenib: a new therapy for use in BRAF-mutated metastatic melanoma. J Adv Pract Oncol. 2014;5:211‒215.
  • Manchado E, Huang CH, Tasdemir N, et al. A pipeline for drug target identification and validation. Cold Spring Harb Symp Quant Biol. 2016;81:257‒267.
  • Chou YP, Lin YK, Chen CH, et al. Recent advances in polymeric nanosystems for treating cutaneous melanoma and its metastasis. Curr Pharm Design. 2017;23:5301–5314. DOI:10.2174/1381612823666170710121348.
  • Zhang X, Cai A, Gao Y, et al. Treatment of melanoma by nano-conjugate-delivered Wee1 siRNA. Mol Pharm. 2021;18:3387–3400.
  • Labala S, Jose A, Venuganti VV. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf B Biointerfaces. 2016;146:188–197.
  • Chen Y, Bathula SR, Yang Q, et al. Targeted nanoparticles deliver siRNA to melanoma. J Invest Dermatol. 2010;130:2790–2798.
  • Reddy TL, Garikapati KR, Reddy SG, et al. Simultaneous delivery of paclitaxel and Bcl-2 siRNA via Ph-sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci Rep. 2016;6:35223.
  • Li C, Han X. Melanoma cancer immunotherapy using PD-L1 siRNA and imatinib promotes cancer-immunity cycle. Pharm Res. 2020;37:109.
  • Ehexige E, Bao M, Bazarjav P, et al. Silencing of STAT3 via peptidomimetic LNP-mediated systemic delivery of RNAi downregulates PD-L1 and inhibits melanoma growth. Biomolecules. 2020;10:285.
  • Wang Y, Luo YL, Chen YF, et al. Dually regulating the proliferation and the immune microenvironment of melanoma via nanoparticle-delivered siRNA targeting onco-immunologic CD155. Biomater Sci. 2020;8:6683–6694.
  • Ruan W, Zhai Y, Yu K, et al. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm. 2018;553:298–309.
  • Fico A, Alfano D, Valentino A, et al. C-Myc modulation: a key role in melanoma drug response. Cancer Biol Ther. 2015;16:1375–1386.
  • Gao Y, Chen X, Tian T, et al. A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery. Adv Mater. 2022;34:e2201731.
  • Li J, Yao Y, Wang Y, et al. Modulation of the crosstalk between Schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv Mater. 2022;34:e2202513.
  • Ehexige E, Ganbold T, Yu X, et al. Design of peptidomimetic functionalized cholesterol based lipid nanoparticles for efficient delivery of therapeutic nucleic acids. Molecules. 2019;24:3413.
  • Inozume T, Yaguchi T, Furuta J, et al. Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol. 2016;136:255–263.
  • Padmakumari RG, Sherly CD, Ramesan RM. Therapeutic delivery of nucleic acids for skin wound healing. Ther Deliv. 2022;13:339–358.
  • Liu Q, Zhang Y, Huang J, et al. Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. J Nanobiotechnol. 2022;20:386.
  • Shaabani E, Sharifiaghdam M, Lammens J, et al. Increasing angiogenesis factors in hypoxic diabetic wound conditions by siRNA delivery: additive effect of LbL-gold nanocarriers and desloratadine-induced lysosomal escape. Int J Mol Sci. 2021;22:9216.
  • Li N, Luo HC, Yang C, et al. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats. Int J Nanomed. 2014;9:3377–3387.
  • Rabbani PS, Zhou A, Borab ZM, et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials. 2017;132:1–15.
  • Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. Sci Technol Adv Mater. 2021;22:885–907.
  • Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev. 2019;146:37–59.
  • Morry J, Ngamcherdtrakul W, Gu S, et al. Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis. Biomaterials. 2015;66:41–52.
  • Kang S, Kim J, Ahn M, et al. Won C.RNAi nanotherapy for fibrosis: highly durable knockdown of CTGF/CCN-2 using siRNA-DegradaBALL (LEM-S401) to treat skin fibrotic diseases. Nanoscale. 2020;12:6385–6393.
  • Wang M, Han Y, Yu X, et al. Upconversion nanoparticle powered microneedle patches for transdermal delivery of siRNA. Adv Healthc Mater. 2020;9:e1900635.
  • Chu H, Wu T, Wu W, et al. Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis. Protein Cell. 2015;6:589–598.
  • Guo S, Li H, Ma M, et al. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol Ther Nucleic Acids. 2017;9:399–408.
  • Guan CM, Chinen AB, Ferrer JR, et al. Impact of sequence specificity of spherical nucleic acids on macrophage activation in vitro and in vivo. Mol Pharm. 2019;16:4223–4229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.